Torsten Utescher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6787384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14964-14969.	7.1	547
2	The coexistence approach — a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 134, 61-86.	2.3	539
3	Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304, 202-211.	2.3	127
4	Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304, 262-275.	2.3	123
5	A late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 344-345, 16-38.	2.3	116
6	Eocene monsoon prevalence over China: A paleobotanical perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366, 302-311.	2.3	99
7	Cenozoic climate gradients in Eurasia — a palaeo-perspective on future climate change?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304, 351-358.	2.3	98
8	A Late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253, 251-270.	2.3	95
9	Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the late Miocene: Evidence from plant macrofossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 358-360, 19-26.	2.3	86
10	Cenozoic paleotemperatures and leaf physiognomy — A European perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 248, 24-31.	2.3	84
11	Neogene flora and vegetation development of the Pannonian domain in relation to palaeoclimate and palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253, 115-140.	2.3	82
12	Present-day climatic equivalents of European Cenozoic climates. Earth and Planetary Science Letters, 2009, 284, 544-552.	4.4	81
13	The Miocene peat-forming vegetation of northwestern Germany: an analysis of wood remains and comparison with previous palynological interpretations. Review of Palaeobotany and Palynology, 1999, 104, 239-266.	1.5	75
14	The evolution of Miocene climates in North China: Preliminary results of quantitative reconstructions from plant fossil records. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304, 308-317.	2.3	66
15	Paleogene temperature gradient, seasonal variation and climate evolution of northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 313-314, 150-161.	2.3	66
16	Analysis of heat transport mechanisms from a Late Miocene model experiment with a fully-coupled atmosphere–ocean general circulation model. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304, 337-350.	2.3	65
17	Miocene climate evolution of northern Europe: A palynological investigation from Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 161-175.	2.3	53
18	Reconstruction of the middle Eocene climate of Messel using palaeobotanical data. Neues Jahrbuch Fur Geologie Und Palaontologie - Abhandlungen, 2011, 260, 305-318.	0.4	47

TORSTEN UTESCHER

#	Article	IF	CITATIONS
19	The Cenozoic Cooling – continental signals from the Atlantic and Pacific side of Eurasia. Earth and Planetary Science Letters, 2015, 415, 121-133.	4.4	47
20	The sensitivity of ECHAM4/ML to a double CO2 scenario for the Late Miocene and the comparison to terrestrial proxy data. Global and Planetary Change, 2007, 57, 189-212.	3.5	44
21	Atmospheric CO2 from the late Oligocene to early Miocene based on photosynthesis data and fossil leaf characteristics. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374, 41-51.	2.3	35
22	Miocene shift of European atmospheric circulation from trade wind to westerlies. Scientific Reports, 2014, 4, 5660.	3.3	34
23	Late Eocene to early Miocene climate and vegetation of Bulgaria. Review of Palaeobotany and Palynology, 2009, 153, 360-374.	1.5	32
24	Miocene vegetation shift and climate change: Evidence from the Siwalik of Nepal. Global and Planetary Change, 2018, 161, 108-120.	3.5	32
25	Stomatal density and index data of Platanus neptuni leaf fossils and their evaluation as a CO2 proxy for the Oligocene. Review of Palaeobotany and Palynology, 2014, 206, 1-9.	1.5	28
26	Stratigraphy of the Cenozoic Lower Rhine Basin, northwestern Germany. Newsletters on Stratigraphy, 2004, 40, 73-110.	1.2	28
27	Late Miocene vegetation of the Pannonian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 467, 131-148.	2.3	27
28	Stomatal pore length change in leaves of Eotrigonobalanus furcinervis (Fagaceae) from the Late Eocene to the Latest Oligocene and its impact on gas exchange and CO2 reconstruction. Review of Palaeobotany and Palynology, 2012, 174, 106-112.	1.5	25
29	The Fossil History of Quercus. Tree Physiology, 2017, , 39-105.	2.5	23
30	Origin, sediment fill, and sequence stratigraphy of the Cenozoic Lower Rhine Basin (Germany) interpreted from well logs. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 2014, 165, 287-314.	0.4	22
31	Late Pliocene temperatures and their spatial variation at the southeastern border of the Qinghai–Tibet Plateau. Journal of Asian Earth Sciences, 2015, 111, 44-53.	2.3	22
32	Geochemical appraisal of palaeovegetation and climate oscillation in the Late Miocene of Western Bulgaria. Organic Geochemistry, 2011, 42, 1363-1374.	1.8	21
33	The Badenian parastratotype at ?idlochovice from the perspective of the multiproxy study. Neues Jahrbuch Fur Geologie Und Palaontologie - Abhandlungen, 2014, 271, 169-201.	0.4	20
34	Pollen, ostracod and stable isotope records of palaeoenvironment and climate: Upper Miocene and Pliocene of the ‡ankırı Basin (Central Anatolia, Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 467, 149-165.	2.3	18
35	Continental climate gradients in North America and Western Eurasia before and after the closure of the Central American Seaway. Earth and Planetary Science Letters, 2017, 472, 120-130.	4.4	16
36	Cenozoic vegetation gradients in the mid- and higher latitudes of Central Eurasia and climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 467, 69-82.	2.3	16

TORSTEN UTESCHER

#	Article	IF	CITATIONS
37	Quantification of Calabrian climate in southern Primory'e, Far East of Russia — An integrative case study using multiple proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 386, 445-458.	2.3	15
38	Paleogene climate dynamics in the Primorye Region, Far East of Russia, based on a Coexistence Approach analysis of palaeobotanical data. Palaeobiodiversity and Palaeoenvironments, 2020, 100, 5-31.	1.5	13
39	Oligocene vegetation of Europe and western Asia—Diversity change and continental patterns reflected by plant functional types. Geological Journal, 2021, 56, 628-649.	1.3	12
40	Vegetation and climate changes during the Miocene climatic optimum and Miocene climatic transition in the northwestern part of Central Paratethys. Geological Journal, 2021, 56, 729-743.	1.3	11
41	A new late Miocene (Tortonian) flora from Gavdos Island in southernmost Greece evaluated in the context of vegetation and climate in the Eastern Mediterranean. Neues Jahrbuch Fur Geologie Und Palaontologie - Abhandlungen, 2015, 275, 47-81.	0.4	10
42	Plant- and micromammal-based paleoprecipitation proxies: Comparing results of the Coexistence and Climate-Diversity Approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443, 18-33.	2.3	10
43	Dynamics and evolution of Turgayâ€type vegetation in Western Siberia throughout the early Oligocene to earliest Miocene—a study based on diversity of plant functional types in the carpological record. Journal of Systematics and Evolution, 2019, 57, 129-141.	3.1	9
44	Diversity patterns in microfloras recovered from Miocene brown coals of the lower Rhine Basin reveal distinct coupling of the structure of the peatâ€forming vegetation and continental climate variability. Geological Journal, 2021, 56, 768-785.	1.3	9
45	Monsoonal climate of East Asia in Eocene times inferred from an analysis of plant functional types. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601, 111138.	2.3	8
46	Quantification of Calabrian vegetation in Southern Primory'e (Far East of Russia) using multiple proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 467, 253-264.	2.3	7
47	Paleogene vegetation changes in Primorye, Far East of Russia: A study based on diversity of plant functional types. Geological Journal, 2021, 56, 650-672.	1.3	7
48	Asian monsoon and vegetation shift: evidence from the Siwalik succession of India. Geological Magazine, 2022, 159, 1397-1414.	1.5	6
49	Late early to early middle Eocene climate and vegetation change at Tastakh Lake (northern Yakutia,) Tj ETQq1 1	0.784314 1.5	rgBT /Overloo
50	Climate and vegetation change during the Upper Siwalik—a study based on the palaeobotanical record of the eastern Himalaya. Palaeobiodiversity and Palaeoenvironments, 2021, 101, 103-121.	1.5	5
51	Short-term climate and vegetation dynamics in Lena River Delta (northern Yakutia, Eastern Siberia) during early Eocene. Palaeoworld, 2022, 31, 521-541.	1.1	5
52	Drowning of the Miocene Billund delta, Jylland: land–sea fluctuations during a global warming event. Geological Survey of Denmark and Greenland Bulletin, 0, 28, 9-12.	2.0	5
53	The late Miocene Beli Breg Basin (Bulgaria): palaeoecology and climate reconstructions based on pollen data. Palaeobiodiversity and Palaeoenvironments, 2021, 101, 79-102.	1.5	4
54	Rupelian Kazakhstan floras in the context of early Oligocene climate and vegetation in Central Asia. Terra Nova, 2021, 33, 383-399.	2.1	3

#	Article	IF	CITATIONS
55	Introduction to <scp>NECLIME</scp> Special Issue: Biodiversity and floral patterns in the course of Cenozoic climate change. Geological Journal, 2021, 56, 613-615.	1.3	0