Scott Fendorf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6786988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human health risk assessment and geochemical mobility of rare earth elements in Amazon soils. Science of the Total Environment, 2022, 806, 151191.	3.9	9
2	Bone manganese is a sensitive biomarker of ongoing elevated manganese exposure, but does not accumulate across the lifespan. Environmental Research, 2022, 204, 112355.	3.7	8
3	Export of Organic Carbon from Reduced Fine-Grained Zones Governs Biogeochemical Reactivity in a Simulated Aquifer. Environmental Science & Technology, 2022, 56, 2738-2746.	4.6	8
4	Mineral Protection and Resource Limitations Combine to Explain Profile‣cale Soil Carbon Persistence. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	5
5	Residual As(V) in Aqueous Solutions After Its Removal by Synthetic Minerals. Water, Air, and Soil Pollution, 2022, 233, .	1.1	0
6	Sulfur Biogeochemical Cycling and Redox Dynamics in a Shaleâ€Đominated Mountainous Watershed. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	5
7	Organic compounds alter the preference and rates of heavy metal adsorption on ferrihydrite. Science of the Total Environment, 2021, 750, 141485.	3.9	38
8	Soil and Aquifer Properties Combine as Predictors of Groundwater Uranium Concentrations within the Central Valley, California. Environmental Science & amp; Technology, 2021, 55, 352-361.	4.6	38
9	Simulated Aquifer Heterogeneity Leads to Enhanced Attenuation and Multiple Retention Processes of Zinc. Environmental Science & Technology, 2021, 55, 2939-2948.	4.6	8
10	Development of energetic and enzymatic limitations on microbial carbon cycling in soils. Biogeochemistry, 2021, 153, 191-213.	1.7	14
11	Porewater Lead Concentrations Limited by Particulate Organic Matter Coupled With Ephemeral Iron(III) and Sulfide Phases during Redox Cycles Within Contaminated Floodplain Soils. Environmental Science & Technology, 2021, 55, 5878-5886.	4.6	13
12	Geochemical signatures and natural background values of rare earth elements in soils of Brazilian Amazon. Environmental Pollution, 2021, 277, 116743.	3.7	19
13	Perchlorate and Agriculture on Mars. Soil Systems, 2021, 5, 37.	1.0	15
14	Effects of moisture and physical disturbance on pore-scale oxygen content and anaerobic metabolisms in upland soils. Science of the Total Environment, 2021, 780, 146572.	3.9	8
15	The effect of porewater ionic composition on arsenate adsorption to clay minerals. Science of the Total Environment, 2021, 785, 147096.	3.9	11
16	Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments. Environmental Science & Technology, 2020, 54, 1493-1502.	4.6	37
17	Controlling Arsenic Mobilization during Managed Aquifer Recharge: The Role of Sediment Heterogeneity. Environmental Science & amp; Technology, 2020, 54, 8728-8738.	4.6	33
18	Contribution of clay-aquitard to aquifer iron concentrations and water quality. Science of the Total Environment, 2020, 741, 140061.	3.9	7

#	Article	IF	CITATIONS
19	Effect of Bicarbonate, Calcium, and pH on the Reactivity of As(V) and U(VI) Mixtures. Environmental Science & Technology, 2020, 54, 3979-3987.	4.6	11
20	Redox Heterogeneities Promote Thioarsenate Formation and Release into Groundwater from Low Arsenic Sediments. Environmental Science & amp; Technology, 2020, 54, 3237-3244.	4.6	36
21	Arsenic Fate in Peat Controlled by the pH-Dependent Role of Reduced Sulfur. Environmental Science & Technology, 2020, 54, 6682-6692.	4.6	21
22	Calcium-Uranyl-Carbonato Species Kinetically Limit U(VI) Reduction by Fe(II) and Lead to U(V)-Bearing Ferrihydrite. Environmental Science & Technology, 2020, 54, 6021-6030.	4.6	17
23	Lithologic and redox controls on hexavalent chromium in vadose zone sediments of California's Central Valley. Geochimica Et Cosmochimica Acta, 2019, 265, 478-494.	1.6	18
24	Antimonite Binding to Natural Organic Matter: Spectroscopic Evidence from a Mine Water Impacted Peatland. Environmental Science & Technology, 2019, 53, 10792-10802.	4.6	36
25	Rice production threatened by coupled stresses of climate and soil arsenic. Nature Communications, 2019, 10, 4985.	5.8	146
26	Turmeric means "yellow―in Bengali: Lead chromate pigments added to turmeric threaten public health across Bangladesh. Environmental Research, 2019, 179, 108722.	3.7	44
27	Sources of Blood Lead Exposure in Rural Bangladesh. Environmental Science & Technology, 2019, 53, 11429-11436.	4.6	33
28	Simplex-Centroid mixture design applied to arsenic (V) removal from waters using synthetic minerals. Journal of Environmental Management, 2019, 238, 92-101.	3.8	16
29	Antimonite Complexation with Thiol and Carboxyl/Phenol Groups of Peat Organic Matter. Environmental Science & Technology, 2019, 53, 5005-5015.	4.6	34
30	Governing Constraints of Chromium(VI) Formation from Chromium(III)-Bearing Minerals in Soils and Sediments. Soil Systems, 2019, 3, 74.	1.0	11
31	Experimental constraints on redox-induced arsenic release and retention from aquifer sediments in the central Yangtze River Basin. Science of the Total Environment, 2019, 649, 629-639.	3.9	29
32	Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems. Earth-Science Reviews, 2019, 189, 79-98.	4.0	91
33	Anoxic microsites in upland soils dominantly controlled by clay content. Soil Biology and Biochemistry, 2018, 118, 42-50.	4.2	109
34	Quantifying biogeochemical heterogeneity in soil systems. Geoderma, 2018, 324, 89-97.	2.3	23
35	Arsenic leaching from ceramic water filters. Environmental Science: Water Research and Technology, 2018, 4, 234-240.	1.2	2
36	The Ability of Soil Pore Network Metrics to Predict Redox Dynamics is Scale Dependent. Soil Systems, 2018, 2, 66.	1.0	16

#	Article	lF	CITATIONS
37	Prevalence of elevated blood lead levels among pregnant women and sources of lead exposure in rural Bangladesh: A case control study. Environmental Research, 2018, 166, 1-9.	3.7	40
38	Hexavalent Chromium Sources and Distribution in California Groundwater. Environmental Science & Technology, 2018, 52, 8242-8251.	4.6	157
39	Discerning Microbially Mediated Processes During Redox Transitions in Flooded Soils Using Carbon and Energy Balances. Frontiers in Environmental Science, 2018, 6, .	1.5	25
40	Overpumping leads to California groundwater arsenic threat. Nature Communications, 2018, 9, 2089.	5.8	124
41	Redox controls on arsenic enrichment and release from aquifer sediments in central Yangtze River Basin. Geochimica Et Cosmochimica Acta, 2017, 204, 104-119.	1.6	101
42	Hexavalent Chromium Generation within Naturally Structured Soils and Sediments. Environmental Science & amp; Technology, 2017, 51, 2058-2067.	4.6	127
43	Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin. Science of the Total Environment, 2017, 603-604, 663-675.	3.9	55
44	Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification. Chemosphere, 2017, 182, 31-39.	4.2	117
45	Fate of arsenic before and after chemical-enhanced washing of an arsenic-containing soil in Hong Kong. Science of the Total Environment, 2017, 599-600, 679-688.	3.9	96
46	Thermodynamically controlled preservation of organic carbon in floodplains. Nature Geoscience, 2017, 10, 415-419.	5.4	234
47	Oxidative Uranium Release from Anoxic Sediments under Diffusion-Limited Conditions. Environmental Science & Technology, 2017, 51, 11039-11047.	4.6	21
48	Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH. Geochimica Et Cosmochimica Acta, 2017, 215, 122-140.	1.6	31
49	Depth Stratification Leads to Distinct Zones of Manganese and Arsenic Contaminated Groundwater. Environmental Science & Technology, 2017, 51, 8926-8932.	4.6	63
50	Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range. Environmental Science & Technology, 2017, 51, 141-149.	4.6	58
51	Relevance of Reactive Fe:S Ratios for Sulfur Impacts on Arsenic Uptake by Rice. Soils, 2017, 1, 1.	1.0	4
52	Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nature Communications, 2017, 8, 1771.	5.8	276
53	Delineating the Convergence of Biogeochemical Factors Responsible for Arsenic Release to Groundwater in South and Southeast Asia. Advances in Agronomy, 2016, 140, 43-74.	2.4	14
54	Indo-Gangetic groundwater threat. Nature Geoscience, 2016, 9, 732-733.	5.4	17

#	Article	IF	CITATIONS
55	Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils?. Biogeochemistry, 2016, 127, 157-171.	1.7	236
56	Anoxic oxidation of chromium. Geology, 2016, 44, 543-546.	2.0	44
57	Imaging geochemical heterogeneities using inverse reactive transport modeling: An example relevant for characterizing arsenic mobilization and distribution. Advances in Water Resources, 2016, 88, 186-197.	1.7	44
58	Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nature Geoscience, 2016, 9, 70-76.	5.4	152
59	Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin. Environmental Science & Technology, 2016, 50, 3521-3529.	4.6	112
60	Numerical Modeling of Arsenic Mobility during Reductive Iron-Mineral Transformations. Environmental Science & Technology, 2016, 50, 2459-2467.	4.6	62
61	Physico-Chemical Heterogeneity of Organic-Rich Sediments in the Rifle Aquifer, CO: Impact on Uranium Biogeochemistry. Environmental Science & Technology, 2016, 50, 46-53.	4.6	77
62	Indigenous arsenic(<scp>V</scp>)â€reducing microbial communities in redoxâ€fluctuating nearâ€surface sediments of the <scp>M</scp> ekong <scp>D</scp> elta. Geobiology, 2015, 13, 581-587.	1.1	20
63	Assessment of human–natural system characteristics influencing global freshwater supply vulnerability. Environmental Research Letters, 2015, 10, 104014.	2.2	46
64	Stable Isotopes and Iron Oxide Mineral Products as Markers of Chemodenitrification Environmental Science & amp; Technology, 2015, 49, 3444-3452.	4.6	125
65	Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge. Environmental Science & Technology, 2015, 49, 7802-7809.	4.6	63
66	Reactivity and speciation of mineral-associated arsenic in seasonal and permanent wetlands of the Mekong Delta. Geochimica Et Cosmochimica Acta, 2015, 171, 143-155.	1.6	47
67	Peat formation concentrates arsenic within sediment deposits of the Mekong Delta. Geochimica Et Cosmochimica Acta, 2015, 149, 190-205.	1.6	48
68	Deciphering and predicting spatial and temporal concentrations of arsenic within the Mekong Delta aquifer. Environmental Chemistry, 2014, 11, 579.	0.7	27
69	Uranium incorporation into aluminum-substituted ferrihydrite during iron(<scp>ii</scp>)-induced transformation. Environmental Sciences: Processes and Impacts, 2014, 16, 2137-2144.	1.7	32
70	Competing retention pathways of uranium upon reaction with Fe(II). Geochimica Et Cosmochimica Acta, 2014, 142, 166-185.	1.6	60
71	Arsenic in the Multi-aquifer System of the Mekong Delta, Vietnam: Analysis of Large-Scale Spatial Trends and Controlling Factors. Environmental Science & Technology, 2014, 48, 6081-6088. 	4.6	25
72	Uranium Incorporation into Amorphous Silica. Environmental Science & Technology, 2014, 48, 8636-8644.	4.6	35

#	Article	IF	CITATIONS
73	Arsenic Concentrations in Paddy Soil and Rice and Health Implications for Major Rice-Growing Regions of Cambodia. Environmental Science & Technology, 2014, 48, 4699-4706.	4.6	94
74	Constraints on Precipitation of the Ferrous Arsenite Solid H ₇ Fe ₄ (AsO ₃) ₅ . Journal of Environmental Quality, 2014, 43, 947-954.	1.0	7
75	Distributed microbially- and chemically-mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates. Geochimica Et Cosmochimica Acta, 2013, 104, 29-41.	1.6	41
76	Seasonal dynamics of dissolved silicon in a rice cropping system after straw incorporation. Geochimica Et Cosmochimica Acta, 2013, 123, 120-133.	1.6	62
77	Influence of Soil Geochemical and Physical Properties on Chromium(VI) Sorption and Bioaccessibility. Environmental Science & Technology, 2013, 47, 11241-11248.	4.6	72
78	Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13751-13756.	3.3	202
79	Dependence of Arsenic Fate and Transport on Biogeochemical Heterogeneity Arising from the Physical Structure of Soils and Sediments. Journal of Environmental Quality, 2013, 42, 1119-1129.	1.0	14
80	Morphological Adaptations for Digging and Climate-Impacted Soil Properties Define Pocket Gopher (Thomomys spp.) Distributions. PLoS ONE, 2013, 8, e64935.	1.1	23
81	Oxidation and competitive retention of arsenic between iron- and manganese oxides. Geochimica Et Cosmochimica Acta, 2012, 96, 294-303.	1.6	118
82	Silicate Mineral Impacts on the Uptake and Storage of Arsenic and Plant Nutrients in Rice (Oryza sativa) Tj ETQc	10 0 0 rgB7 4.6	F /Overlock 10 165
83	Intra-particle migration of mercury in granular polysulfide–rubber-coated activated carbon (PSR-AC). Chemosphere, 2012, 86, 648-654.	4.2	6
84	Transport Implications Resulting from Internal Redistribution of Arsenic and Iron within Constructed Soil Aggregates. Environmental Science & Technology, 2011, 45, 582-588.	4.6	46
85	Competitive Microbially and Mn Oxide Mediated Redox Processes Controlling Arsenic Speciation and Partitioning. Environmental Science & amp; Technology, 2011, 45, 5572-5579.	4.6	61
86	Influence of Uranyl Speciation and Iron Oxides on Uranium Biogeochemical Redox Reactions. Geomicrobiology Journal, 2011, 28, 444-456.	1.0	38
87	Influence of Natural Organic Matter on As Transport and Retention. Environmental Science & Technology, 2011, 45, 546-553.	4.6	136
88	Geochemical Processes Governing the Fate and Transport of Chromium(III) and Chromium(VI) in Soils. Vadose Zone Journal, 2011, 10, 1058-1070.	1.3	19
89	Dehalogenation of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyl by Bimetallic, Impregnated, and Nanoscale Zerovalent Iron. Environmental Science & Technology, 2011, 45, 4896-4903.	4.6	157
90	Reduction of Uranium(VI) by Soluble Iron(II) Conforms with Thermodynamic Predictions. Environmental Science & Technology, 2011, 45, 4718-4725.	4.6	70

#	Article	IF	CITATIONS
91	Alteration of ferrihydrite reductive dissolution and transformation by adsorbed As and structural Al: Implications for As retention. Geochimica Et Cosmochimica Acta, 2011, 75, 870-886.	1.6	73
92	Defining the distribution of arsenic species and plant nutrients in rice (Oryza sativa L.) from the root to the grain. Geochimica Et Cosmochimica Acta, 2011, 75, 6655-6671.	1.6	75
93	Immobilization of Hg(II) in water with polysulfide-rubber (PSR) polymer-coated activated carbon. Water Research, 2011, 45, 453-460.	5.3	45
94	Effect of Uranium(VI) Speciation on Simultaneous Microbial Reduction of Uranium(VI) and Iron(III). Journal of Environmental Quality, 2011, 40, 90-97.	1.0	10
95	Native and Nonâ€Native Community Assembly through Edaphic Manipulation: Implications for Habitat Creation and Restoration. Restoration Ecology, 2011, 19, 709-716.	1.4	4
96	Short-term fates of high sulfur inputs in Northern California vineyard soils. Nutrient Cycling in Agroecosystems, 2011, 89, 135-142.	1.1	13
97	Arsenic in South Asia Groundwater. Geography Compass, 2010, 4, 1532-1552.	1.5	24
98	Arsenic Localization, Speciation, and Co-Occurrence with Iron on Rice (<i>Oryza sativa</i> L.) Roots Having Variable Fe Coatings. Environmental Science & Technology, 2010, 44, 8108-8113.	4.6	163
99	Impact of Uranylâ^'Calciumâ^'Carbonato Complexes on Uranium(VI) Adsorption to Synthetic and Natural Sediments. Environmental Science & Technology, 2010, 44, 928-934.	4.6	169
100	Spatial Patterns and Modeling of Reductive Ferrihydrite Transformation Observed in Artificial Soil Aggregates. Environmental Science & Technology, 2010, 44, 74-79.	4.6	36
101	Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochimica Et Cosmochimica Acta, 2010, 74, 980-994.	1.6	183
102	Aggregate-scale spatial heterogeneity in reductive transformation of ferrihydrite resulting from coupled biogeochemical and physical processes. Geochimica Et Cosmochimica Acta, 2010, 74, 2811-2825.	1.6	44
103	Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 2010, 328, 1123-1127.	6.0	972
104	Kinetic and Mechanistic Constraints on the Oxidation of Biogenic Uraninite by Ferrihydrite. Environmental Science & Technology, 2010, 44, 163-169.	4.6	60
105	Arsenic Chemistry in Soils and Sediments. Developments in Soil Science, 2010, , 357-378.	0.5	45
106	Chapter 3 Biogeochemical Processes Controlling the Fate and Transport of Arsenic. Advances in Agronomy, 2009, 104, 137-164.	2.4	50
107	Incorporation of Oxidized Uranium into Fe (Hydr)oxides during Fe(II) Catalyzed Remineralization. Environmental Science & Technology, 2009, 43, 7391-7396.	4.6	115
108	Thermodynamic Constraints on Reductive Reactions Influencing the Biogeochemistry of Arsenic in Soils and Sediments. Environmental Science & Technology, 2009, 43, 4871-4877.	4.6	95

#	Article	IF	CITATIONS
109	Stability of Uranium Incorporated into Fe (Hydr)oxides under Fluctuating Redox Conditions. Environmental Science & Technology, 2009, 43, 4922-4927.	4.6	79
110	Timeâ€lapse geophysical imaging of soil moisture dynamics in tropical deltaic soils: An aid to interpreting hydrological and geochemical processes. Water Resources Research, 2009, 45, .	1.7	81
111	Aggregateâ€Scale Heterogeneity in Iron (Hydr)oxide Reductive Transformations. Vadose Zone Journal, 2009, 8, 1004-1012.	1.3	26
112	Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature, 2008, 454, 505-508.	13.7	486
113	Depositional Influences on Porewater Arsenic in Sediments of a Mining-Contaminated Freshwater Lake. Environmental Science & Technology, 2008, 42, 6823-6829.	4.6	19
114	Groundwater flow in an arsenic-contaminated aquifer, Mekong Delta, Cambodia. Applied Geochemistry, 2008, 23, 3072-3087.	1.4	93
115	Integrated biogeochemical and hydrologic processes driving arsenic release from shallow sediments to groundwaters of the Mekong delta. Applied Geochemistry, 2008, 23, 3059-3071.	1.4	152
116	Changes in Bacterial and Archaeal Community Structure and Functional Diversity along a Geochemically Variable Soil Profile. Applied and Environmental Microbiology, 2008, 74, 1620-1633.	1.4	439
117	Confounding Impacts of Iron Reduction on Arsenic Retention. Environmental Science & Technology, 2008, 42, 4777-4783.	4.6	193
118	Reductive Processes Controlling Arsenic Retention: Revealing the Relative Importance of Iron and Arsenic Reduction. Environmental Science & amp; Technology, 2008, 42, 8283-8289.	4.6	212
119	Elucidating Biogeochemical Reduction of Chromate via Carbon Amendments and Soil Sterilization. Geomicrobiology Journal, 2007, 24, 125-132.	1.0	7
120	Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6544-6549.	3.3	451
121	Chapter 11 Biogeochemical Uranium Redox Transformations: Potential Oxidants of Uraninite. Developments in Earth and Environmental Sciences, 2007, , 293-319.	0.1	8
122	Reduction of Cr(VI) under Acidic Conditions by the Facultative Fe(III)-Reducing BacteriumAcidiphilium cryptum. Environmental Science & amp; Technology, 2007, 41, 146-152.	4.6	72
123	Phosphate Imposed Limitations on Biological Reduction and Alteration of Ferrihydrite. Environmental Science & Technology, 2007, 41, 166-172.	4.6	160
124	Speciation-Dependent Microbial Reduction of Uranium within Iron-Coated Sands. Environmental Science & Technology, 2007, 41, 7343-7348.	4.6	43
125	In Situ Bioreduction of Uranium (VI) to Submicromolar Levels and Reoxidation by Dissolved Oxygen. Environmental Science & Technology, 2007, 41, 5716-5723.	4.6	182
126	Chapter 12 Phosphate Interactions with Iron (Hydr)oxides: Mineralization Pathways and Phosphorus Retention upon Bioreduction. Developments in Earth and Environmental Sciences, 2007, , 321-348.	0.1	18

#	Article	IF	CITATIONS
127	Quantifying Constraints Imposed by Calcium and Iron on Bacterial Reduction of Uranium(VI). Journal of Environmental Quality, 2007, 36, 363-372.	1.0	46
128	Micro-Scale Heterogeneity in Biogeochemical Uranium Cycling. AIP Conference Proceedings, 2007, , .	0.3	0
129	Thermodynamic Constraints on the Oxidation of Biogenic UO2by Fe(III) (Hydr)oxides. Environmental Science & Technology, 2006, 40, 3544-3550.	4.6	129
130	Metal(loid) Diagenesis in Mine-Impacted Sediments of Lake Coeur d'Alene, Idaho. Environmental Science & Technology, 2006, 40, 2537-2543.	4.6	40
131	Contrasting Effects of Dissimilatory Iron(III) and Arsenic(V) Reduction on Arsenic Retention and Transport. Environmental Science & amp; Technology, 2006, 40, 6715-6721.	4.6	227
132	Introduction: Controls on arsenic transport in near-surface aquatic systems. Chemical Geology, 2006, 228, 1-5.	1.4	10
133	Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chemical Geology, 2006, 228, 16-32.	1.4	142
134	Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chemical Geology, 2006, 228, 97-111.	1.4	162
135	Heterogeneous response to biostimulation for U(VI) reduction in replicated sediment microcosms. Biodegradation, 2006, 17, 303-316.	1.5	55
136	Pilot-Scale in Situ Bioremedation of Uranium in a Highly Contaminated Aquifer. 2. Reduction of U(VI) and Geochemical Control of U(VI) Bioavailability. Environmental Science & Technology, 2006, 40, 3986-3995.	4.6	242
137	CaUO2CO3 Complexation Implications for Bioremediation of UVI. Physica Scripta, 2005, , 915.	1.2	15
138	Transformation and Transport of Arsenic within Ferric Hydroxide Coated Sands upon Dissimilatory Reducing Bacterial Activity. ACS Symposium Series, 2005, , 77-90.	0.5	11
139	Effects of a diel oxygen cycle on nitrogen transformations and greenhouse gas emissions in a eutrophied subtropical stream. Aquatic Sciences, 2005, 67, 308-315.	0.6	139
140	In situ analysis of thioarsenite complexes in neutral to alkaline arsenic sulphide solutions. Mineralogical Magazine, 2005, 69, 781-795.	0.6	82
141	Processes conducive to the release and transport of arsenic into aquifers of Bangladesh. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18819-18823.	3.3	184
142	Adsorption, Oxidation, and Bioaccessibility of As(III) in Soils. Environmental Science & Technology, 2005, 39, 7102-7110.	4.6	65
143	Chromate Reduction and Retention Processes within Arid Subsurface Environments. Environmental Science & Technology, 2005, 39, 7833-7839.	4.6	41
144	Competing Fe(II)-Induced Mineralization Pathways of Ferrihydrite. Environmental Science & amp; Technology, 2005, 39, 7147-7153.	4.6	475

#	Article	IF	CITATIONS
145	Bioreduction of Uranium in a Contaminated Soil Column. Environmental Science & Technology, 2005, 39, 4841-4847.	4.6	133
146	Chemical Structure of Arsenic and Chromium in CCA-Treated Wood:Â Implications of Environmental Weathering. Environmental Science & Technology, 2004, 38, 5253-5260.	4.6	68
147	Arsenite Retention Mechanisms within Estuarine Sediments of Pescadero, CA. Environmental Science & Technology, 2004, 38, 3299-3304.	4.6	94
148	Chromium Geochemistry of Serpentine Soils. International Geology Review, 2004, 46, 97-126.	1.1	170
149	Biomineralization of As(V)-hydrous ferric oxyhydroxide in microbial mats of an acid-sulfate-chloride geothermal spring, Yellowstone National Park. Geochimica Et Cosmochimica Acta, 2004, 68, 3141-3155.	1.6	102
150	Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II). Geochimica Et Cosmochimica Acta, 2004, 68, 3217-3229.	1.6	183
151	Electron Microscopy Evaluation of the Role of Dissimilatory Metal-reducing Bacteria in Biomineralization Pathways. Microscopy and Microanalysis, 2004, 10, 1538-1539.	0.2	1
152	Temporal Changes in Soil Partitioning and Bioaccessibility of Arsenic, Chromium, and Lead. Journal of Environmental Quality, 2004, 33, 2049-2055.	1.0	102
153	Inhibition of Bacterial U(VI) Reduction by Calcium. Environmental Science & Technology, 2003, 37, 1850-1858.	4.6	254
154	Kinetics and Structural Constraints of Chromate Reduction by Green Rusts. Environmental Science & Technology, 2003, 37, 2750-2757.	4.6	136
155	Arsenite adsorption on galena (PbS) and sphalerite (ZnS). Geochimica Et Cosmochimica Acta, 2003, 67, 895-907.	1.6	67
156	Structural and compositional evolution of Cr/Fe solids after indirect chromate reduction by dissimilatory iron-reducing bacteria. Geochimica Et Cosmochimica Acta, 2003, 67, 401-412.	1.6	96
157	Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochimica Et Cosmochimica Acta, 2003, 67, 909-921.	1.6	363
158	Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochimica Et Cosmochimica Acta, 2003, 67, 2977-2992.	1.6	561
159	Enrichment of Mo in hydrothermal Mn precipitates: possible Mo sources, formation process and phase associations. Chemical Geology, 2003, 199, 29-43.	1.4	46
160	Uranyl Surface Complexes Formed on Subsurface Media from DOE Facilities. Soil Science Society of America Journal, 2002, 66, 99-108.	1.2	44
161	Reductive Dissolution and Biomineralization of Iron Hydroxide under Dynamic Flow Conditions. Environmental Science & Technology, 2002, 36, 1705-1711.	4.6	172
162	Arsenic(III) Oxidation and Arsenic(V) Adsorption Reactions on Synthetic Birnessite. Environmental Science & amp; Technology, 2002, 36, 976-981.	4.6	567

#	Article	IF	CITATIONS
163	Spatial and Temporal Association of As and Fe Species on Aquatic Plant Roots. Environmental Science & Technology, 2002, 36, 1988-1994.	4.6	164
164	Seasonal Transformations of Manganese in a Palustrine Emergent Wetland. Soil Science Society of America Journal, 2002, 66, 1377-1389.	1.2	35
165	Uranyl Surface Complexes Formed on Subsurface Media from DOE Facilities. Soil Science Society of America Journal, 2002, 66, 99.	1.2	39
166	Seasonal Fluctuations in Zinc Speciation within a Contaminated Wetland. Environmental Science & amp; Technology, 2001, 35, 3823-3829.	4.6	116
167	Characterization of Fe Plaque and Associated Metals on the Roots of Mine-Waste Impacted Aquatic Plants. Environmental Science & Technology, 2001, 35, 3863-3868.	4.6	366
168	Iron Promoted Reduction of Chromate by Dissimilatory Iron-Reducing Bacteria. Environmental Science & Technology, 2001, 35, 522-527.	4.6	259
169	Evidence for Microbial Fe(III) Reduction in Anoxic, Mining-Impacted Lake Sediments (Lake Coeur d'Alene,) Tj ETQo	1 1 0.784 1.4	-314 rgBT /O
170	Disulfide disproportionation and CdS formation upon cadmium sorption on FeS2. Geochimica Et Cosmochimica Acta, 2000, 64, 247-255.	1.6	51
171	Constructing Simple Wetland Sampling Devices. Soil Science Society of America Journal, 2000, 64, 809-811.	1.2	16
172	Solidâ€Phase Iron Characterization During Common Selective Sequential Extractions. Soil Science Society of America Journal, 2000, 64, 1608-1615.	1.2	91
173	Inhibition of Bacterially Promoted Uranium Reduction:Â Ferric (Hydr)oxides as Competitive Electron Acceptors. Environmental Science & Technology, 2000, 34, 2190-2195.	4.6	90
174	Chromium Transformations in Natural Environments: The Role of Biological and Abiological Processes in Chromium(VI) Reduction. International Geology Review, 2000, 42, 691-701.	1.1	214
175	Influence of Cadmium Sorption on FeS2Oxidation. Environmental Science & Technology, 2000, 34, 1494-1499.	4.6	23
176	Kinetics of Arsenate Reduction by Dissolved Sulfide. Environmental Science & Technology, 2000, 34, 4714-4720.	4.6	228
177	Purification to Homogeneity and Characterization of a Novel Pseudomonas putida Chromate Reductase. Applied and Environmental Microbiology, 2000, 66, 1788-1795.	1.4	288
178	Arsenic Speciation, Seasonal Transformations, and Co-distribution with Iron in a Mine Waste-Influenced Palustrine Emergent Wetland. Environmental Science & Technology, 2000, 34, 3937-3943.	4.6	132
179	Redistribution of Trace Elements from Contaminated Sediments of Lake Coeur d'Alene during Oxygenation. Journal of Environmental Quality, 1999, 28, 1195-1200.	1.0	23
180	Pyrolusite surface transformations measured in real-time during the reactive transport of Co(II)EDTA2â^. Geochimica Et Cosmochimica Acta, 1999, 63, 3049-3057.	1.6	37

#	Article	IF	CITATIONS
181	Arsenic Mobilization by the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga BrY. Environmental Science & Technology, 1999, 33, 723-729.	4.6	406
182	Auto-Inhibition of Oxide Mineral Reductive Capacity Toward Co(II)EDTA. ACS Symposium Series, 1999, , 358-371.	0.5	7
183	Reduction of Hexavalent Chromium by Amorphous Iron Sulfide. Environmental Science & Technology, 1997, 31, 2039-2044.	4.6	417
184	Arsenate and Chromate Retention Mechanisms on Goethite. 1. Surface Structure. Environmental Science & Technology, 1997, 31, 315-320.	4.6	901
185	Operative Pathways of Chromate and Uranyl Reduction within Soils and Sediments. SSSA Special Publication Series, 0, , 111-129.	0.2	0