Åukasz Åawniczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6786965/publications.pdf

Version: 2024-02-01

ÅNKASZ ÅNNUCZAK

#	Article	IF	CITATIONS
1	Contributions of biosurfactants to natural or induced bioremediation. Applied Microbiology and Biotechnology, 2013, 97, 2327-2339.	1.7	205
2	Microbial Degradation of Hydrocarbons—Basic Principles for Bioremediation: A Review. Molecules, 2020, 25, 856.	1.7	181
3	Why do microorganisms produce rhamnolipids?. World Journal of Microbiology and Biotechnology, 2012, 28, 401-419.	1.7	159
4	The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: Feasibility during field studies. Journal of Environmental Management, 2014, 132, 121-128.	3.8	158
5	Biodegradation of rhamnolipids in liquid cultures: Effect of biosurfactant dissipation on diesel fuel/B20 blend biodegradation efficiency and bacterial community composition. Bioresource Technology, 2012, 111, 328-335.	4.8	73
6	Biodegradation of diesel/biodiesel blends in saturated sand microcosms. Fuel, 2014, 116, 321-327.	3.4	58
7	Betaine and Carnitine Derivatives as Herbicidal Ionic Liquids. Chemistry - A European Journal, 2016, 22, 12012-12021.	1.7	57
8	Different antibacterial activity of novel theophylline-based ionic liquids – Growth kinetic and cytotoxicity studies. Ecotoxicology and Environmental Safety, 2016, 130, 54-64.	2.9	54
9	Differences and dynamic changes in the cell surface properties of three Pseudomonas aeruginosa strains isolated from petroleum-polluted soil as a response to various carbon sources and the external addition of rhamnolipids. Bioresource Technology, 2011, 102, 3028-3033.	4.8	52
10	Herbicidal ionic liquids based on esterquats. New Journal of Chemistry, 2015, 39, 5715-5724.	1.4	50
11	Influence of oligomeric herbicidal ionic liquids with MCPA and Dicamba anions on the community structure of autochthonic bacteria present in agricultural soil. Science of the Total Environment, 2016, 563-564, 247-255.	3.9	49
12	How to accurately assess surfactant biodegradation-impact of sorption on the validity of results. Applied Microbiology and Biotechnology, 2020, 104, 1-12.	1.7	48
13	Comparative study on the biodegradability of morpholinium herbicidal ionic liquids. Biodegradation, 2015, 26, 327-340.	1.5	45
14	Herbicidal Ionic Liquids: A Promising Future for Old Herbicides? Review on Synthesis, Toxicity, Biodegradation, and Efficacy Studies. Journal of Agricultural and Food Chemistry, 2020, 68, 10456-10488.	2.4	44
15	Effect of bioaugmentation on long-term biodegradation of diesel/biodiesel blends in soil microcosms. Science of the Total Environment, 2019, 671, 948-958.	3.9	43
16	Bioherbicidal Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2018, 6, 2741-2750.	3.2	42
17	Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation. Ecotoxicology and Environmental Safety, 2018, 147, 157-164.	2.9	37
18	Esterquat herbicidal ionic liquids (HILs) with two different herbicides: evaluation of activity and phytotoxicity. New Journal of Chemistry, 2018, 42, 9819-9827.	1.4	36

Åukasz Åawniczak

#	Article	IF	CITATIONS
19	Utilization of Triton X-100 and polyethylene glycols during surfactant-mediated biodegradation of diesel fuel. Journal of Hazardous Materials, 2011, 197, 97-103.	6.5	32
20	Rhamnolipids Increase the Phytotoxicity of Diesel Oil Towards Four Common Plant Species in a Terrestrial Environment. Water, Air, and Soil Pollution, 2012, 223, 4275-4282.	1.1	32
21	The influence of cell immobilization by biofilm forming on the biodegradation capabilities of bacterial consortia. World Journal of Microbiology and Biotechnology, 2011, 27, 1183-1188.	1.7	31
22	Ionic liquids with a theophyllinate anion. New Journal of Chemistry, 2014, 38, 3146-3153.	1.4	30
23	Evaluating robustness of a diesel-degrading bacterial consortium isolated from contaminated soil. New Biotechnology, 2016, 33, 852-859.	2.4	30
24	Biodegradation of Triton X-100 and its primary metabolites by a bacterial community isolated from activated sludge. Journal of Environmental Management, 2013, 128, 292-299.	3.8	24
25	Double-Action Herbicidal Ionic Liquids Based on Dicamba Esterquats with 4-CPA, 2,4-D, MCPA, MCPP, and Clopyralid Anions. ACS Sustainable Chemistry and Engineering, 2020, 8, 14584-14594.	3.2	21
26	Transformation of herbicides into dual function quaternary tropinium salts. New Journal of Chemistry, 2020, 44, 8869-8877.	1.4	17
27	Plant growth promoting <i>N</i> -alkyltropinium bromides enhance seed germination, biomass accumulation and photosynthesis parameters of maize (<i>Zea mays</i>). New Journal of Chemistry, 2019, 43, 5805-5812.	1.4	14
28	Comparison of metalworking fluids biodegradation efficiency by autochthonous and environmental communities. Journal of Environmental Management, 2019, 232, 625-635.	3.8	11
29	Quantifying the Mineralization of ¹³ C-Labeled Cations and Anions Reveals Differences in Microbial Biodegradation of Herbicidal Ionic Liquids between Water and Soil. ACS Sustainable Chemistry and Engineering, 2020, 8, 3412-3426.	3.2	11
30	Novel esterquat-based herbicidal ionic liquids incorporating MCPA and MCPP for simultaneous stimulation of maize growth and fighting cornflower. Ecotoxicology and Environmental Safety, 2021, 208, 111595.	2.9	11
31	Hybrid electrochemical and biological treatment of herbicidal ionic liquids comprising the MCPA anion. Ecotoxicology and Environmental Safety, 2019, 181, 172-179.	2.9	10
32	Physicomechanical and Antimicrobial Characteristics of Cement Composites with Selected Nano-Sized Oxides and Binary Oxide Systems. Materials, 2022, 15, 661.	1.3	10
33	Isolation of rhamnolipids-producing cultures from faeces: Influence of interspecies communication on the yield of rhamnolipid congeners. New Biotechnology, 2017, 36, 17-25.	2.4	8
34	Bioavailability of hydrocarbons to bacterial consortia during Triton X-100 mediated biodegradation in aqueous media. Acta Biochimica Polonica, 2013, 60, 789-93.	0.3	4
35	Gasâ€phase hydration of Mg ²⁺ complexes with deprotonated uracil, thymine, uridine, and thymidine. Journal of Mass Spectrometry, 2020, 55, e4504.	0.7	2
36	Biodegradation of Conventional and Emerging Pollutants. Molecules, 2020, 25, 1186.	1.7	1

#	Article	IF	CITATIONS
37	Unusual gasâ€phase hydration efficiency of magnesium–adenosine complex. Rapid Communications in Mass Spectrometry, 2021, 35, e8982.	0.7	1
38	Frontispiece: Betaine and Carnitine Derivatives as Herbicidal Ionic Liquids. Chemistry - A European Journal, 2016, 22, .	1.7	0