Yuan-Pern Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/678672/publications.pdf

Version: 2024-02-01

302 papers 6,953 citations

76322 40 h-index 58 g-index

303 all docs

303 docs citations

times ranked

303

4466 citing authors

#	Article	IF	CITATIONS
1	Formation reaction mechanism and infrared spectra of anti-trans-methacrolein oxide and its associated precursor and adduct radicals. Communications Chemistry, 2022, 5, .	4.5	8
2	Infrared Spectra of 1-Quinolinium (C ₉ H ₇ NH ⁺) Cation and Quinolinyl Radicals (C ₉ H ₇ NH and 3-, 4-, 7-, and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50	702.Jd (8	3-HG ₉
3	Chemistry A, 2022, 126, 2361-2372. A chemical link between methylamine and methylene imine and implications for interstellar glycine formation. Communications Chemistry, 2022, 5, .	4.5	5
4	Hydrogen-Atom-Assisted Uphill Isomerization of <i>N</i> -Methylformamide in Darkness. Journal of the American Chemical Society, 2022, 144, 12339-12346.	13.7	3
5	Infrared characterization of the products and the rate coefficient of the reaction between Criegee intermediate CH ₂ 0O and HCl. Physical Chemistry Chemical Physics, 2021, 23, 11082-11090.	2.8	15
6	Infrared characterization of formation and resonance stabilization of the Criegee intermediate methyl vinyl ketone oxide. Communications Chemistry, 2021, 4, .	4.5	12
7	Formation and Infrared Spectrum of the Open-Form 2-Bromoethyl Radical (2-C2H4Br•) from Ultraviolet Irradiation of a C2H4/Br2/p-H2 Matrix. Journal of Physical Chemistry A, 2021, 125, 2139-2145.	2.5	3
8	Vacuum Ultraviolet Photoionization Induced Proton Migration and Formation of a New C–N Bond in Pyridine Clusters Revealed by Infrared Spectroscopy and Mass Spectrometry. Journal of Physical Chemistry Letters, 2021, 12, 4936-4943.	4.6	14
9	Non-energetic, Low-Temperature Formation of C $<$ sub $>$ Î $\pm <$ /sub $>$ -Glycyl Radical, a Potential Interstellar Precursor of Natural Amino Acids. Journal of Physical Chemistry Letters, 2021, 12, 6744-6751.	4.6	16
10	Structures of Pyridine–Water Clusters Studied with Infrared–Vacuum Ultraviolet Spectroscopy. Journal of Physical Chemistry A, 2021, 125, 7489-7501.	2.5	8
11	Dynamics of Reaction CH3CHI + O2 Investigated via Infrared Emission of Products CO, CO2, and OH. Journal of Physical Chemistry A, 2021, 125, 8373-8385.	2.5	1
12	Hydrogen Abstraction of Acetic Acid by Hydrogen Atom to Form Carboxymethyl Radical •CH2C(O)OH in Solid para-Hydrogen and Its Implication in Astrochemistry. ACS Earth and Space Chemistry, 2021, 5, 106-117.	2.7	10
13	Infrared Spectra of (<i>Z</i>)- and (<i>E</i>)- ^â C ₂ H ₃ C(CH ₃)I Radicals Produced upon Photodissociation of (<i>Z</i>)- and (<i>E</i>)-(CH ₂ I)HCâ•C(CH ₃)I in Solid <i>Dara-</i> Hvdrogen, lournal of Physical Chemistry A. 2020, 124, 5887-5895.	2.5	3
14	A Direct Mapping Approach to Understand Carrier Relaxation Dynamics in Varied Regions of a Polycrystalline Perovskite Film. Angewandte Chemie - International Edition, 2020, 59, 19001-19005.	13.8	4
15	Dynamics of the reaction CH ₂ I + O ₂ probed <i>via</i> infrared emission of CO, CO ₂ , OH and H ₂ CO. Physical Chemistry Chemical Physics, 2020, 22, 17540-17553.	2.8	7
16	Detection of a Criegee Intermediate with an Unsaturated Hydrocarbon Substituent: Fourier-Transform Microwave Spectroscopy of Methyl Vinyl Ketone Oxide. Journal of Physical Chemistry A, 2020, 124, 6203-6206.	2.5	7
17	Hydrogenation of pyrrole: Infrared spectra of the 2,3-dihydropyrrol-2-yl and 2,3-dihydropyrrol-3-yl radicals isolated in solid <i>para</i> -hydrogen. Journal of Chemical Physics, 2020, 153, 164302.	3.0	6
18	Infrared spectroscopy of H+(CO)2 in the gas phase and in para-hydrogen matrices. Journal of Chemical Physics, 2020, 153, 084305.	3.0	4

#	Article	IF	Citations
19	IR–VUV spectroscopy of pyridine dimers, trimers and pyridine–ammonia complexes in a supersonic jet. Physical Chemistry Chemical Physics, 2020, 22, 21520-21534.	2.8	26
20	Infrared Spectra of Monohydrogenated Aniline, <i>ortho</i> - and <i>para</i> -HC ₆ H ₅ NH ₂ , Generated in Solid <i>para</i> -Hydrogen. Journal of Physical Chemistry A, 2020, 124, 7500-7510.	2.5	2
21	Reaction of CH2Cl radical with O2 in solid para-hydrogen: Infrared spectrum of gauche-CH2ClOO radical. Journal of Molecular Structure, 2020, 1215, 128214.	3.6	2
22	Label-Free Optical Microscope Based on a Phase-Modulated Femtosecond Pump–Probe Approach with Subdiffraction Resolution. ACS Photonics, 2020, 7, 607-613.	6.6	6
23	Hydrogen abstraction in astrochemistry: formation of E™CH ₂ CONH ₂ in the reaction of H atom with acetamide (CH ₃ CONH ₂) and photolysis of E™CH ₂ CONH _{CONH_{Conh_{Conh_{Conh_{Conh_{Conh_{Conh_{Conh_{Co}}}	2.8	19
24	Infrared Spectra of Isomers of Protonated Aniline in Solid <i>para</i> -Hydrogen. Journal of Physical Chemistry A, 2020, 124, 2253-2263.	2.5	6
25	UV/Vis+ photochemistry database: Structure, content and applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107056.	2.3	14
26	Infrared Emission from Photodissociation of Methyl Formate [HC(O)OCH ₃] at 248 and 193 nm: Absence of Roaming Signature. Journal of Physical Chemistry A, 2019, 123, 6130-6143.	2.5	11
27	Infrared spectroscopy of the n-propyl and i-propyl radicals in solid para-hydrogen. Journal of Molecular Spectroscopy, 2019, 363, 111170.	1.2	8
28	Effects of solvent molecules on hemi-bonded (CH3SH)2+: infrared absorption of [(CH3SH)2–X]+ with X = H2O, (CH3)2CO, or NH3 and (CH3SH)n+ (n = 3–6). Physical Chemistry Chemical Physics, 2019, 21, 16055-16063.	2.8	11
29	Rate coefficient of the reaction CH $<$ sub $>$ 2 $<$ /sub $>$ 00 + NO $<$ sub $>$ 2 $<$ /sub $>$ probed with a quantum-cascade laser near 11 \hat{l} 1 4m. Physical Chemistry Chemical Physics, 2019, 21, 17578-17583.	2.8	12
30	Infrared spectrum of hydrogenated corannulene <i>rim</i> -HC20H10 isolated in solid <i>para</i> -hydrogen. Journal of Chemical Physics, 2019, 151, 044304.	3.0	13
31	Detailed mechanism and kinetics of the reaction of Criegee intermediate CH ₂ 00 with HCOOH investigated <i>via</i> infrared identification of conformers of hydroperoxymethyl formate and formic acid anhydride. Physical Chemistry Chemical Physics, 2019, 21, 21445-21455.	2.8	31
32	Formation and infrared identification of protonated fluoranthene isomers 3-, 9-, and $10\text{-C}<\text{sub}>16H<\text{sub}>11+\text{ in solid }<\text{i>para}-H}<\text{sub}>2.$ Physical Chemistry Chemical Physics, 2019, 21, 1820-1829.	2.8	4
33	Hydrogen Abstraction/Addition Tunneling Reactions Elucidate the Interstellar H ₂ NCHO/HNCO Ratio and H ₂ Formation. Journal of the American Chemical Society, 2019, 141, 11614-11620.	13.7	58
34	Infrared spectra of protonated and hydrogenated corannulene (C ₂₀ H ₁₀) and sumanene (C ₂₁ H ₁₂) using matrix isolation in solid para-hydrogen – implications for the UIR bands. Proceedings of the International Astronomical Union, 2019, 15, 358-360.	0.0	0
35	Hydrogen-atom tunneling reactions with methyl formate in solid <i>para</i> -hydrogen: Infrared spectra of the methoxy carbonyl [•C(O)OCH ₃] and formyloxy methyl [HC(O)OCH ₂ •] radicals. Journal of Chemical Physics, 2019, 151, 234302.	3.0	15
36	Detection of transient infrared absorption of SO3 and 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH2)O(SO2)O] in the reaction CH2OO+SO2. Journal of Chemical Physics, 2018, 148, 064301.	3.0	26

#	Article	IF	CITATIONS
37	Photodissociation of CF ₂ ICF ₂ I in solid <i>para</i> -hydrogen: infrared spectra of <i>anti</i> -para	2.8	8
38	Spectroscopy of prospective interstellar ions and radicals isolated in <i>para</i> -hydrogen matrices. Physical Chemistry Chemical Physics, 2018, 20, 5344-5358.	2.8	49
39	Infrared spectra of the 1,1-dimethylallyl and 1,2-dimethylallyl radicals isolated in solid <i>para</i> -hydrogen. Journal of Chemical Physics, 2018, 149, 204304.	3.0	8
40	Infrared spectroscopy of propene in solid para-hydrogen and helium droplets: The role of matrix shifts in the analysis of anharmonic resonances. Journal of Molecular Spectroscopy, 2018, 354, 7-14.	1.2	10
41	Activation of Molecular Hydrogen by Arylcarbenes. Chemistry - A European Journal, 2018, 24, 18801-18808.	3.3	13
42	High-resolution vibration–rotational spectra and rotational perturbation of the OO-stretching (< >ν< i> _{6< sub>) band of CH_{2< sub>OO between 879.5 and 932.0 cm^{â~1< sup>. Physical Chemistry Chemical Physics, 2018, 20, 25806-25811.}}}	2.8	12
43	Infrared spectra of 3-hydroxy-(1H)-pyridinium cation and 3-hydroxy-(1H)-pyridinyl radical isolated in solid para-hydrogen. Journal of Chemical Physics, 2018, 149, 014306.	3.0	4
44	Identification and Self-Reaction Kinetics of Criegee Intermediates <i>syn</i> -CH ₃ CHOO and CH ₂ OO via High-Resolution Infrared Spectra with a Quantum-Cascade Laser. Journal of Physical Chemistry Letters, 2018, 9, 4391-4395.	4.6	28
45	Infrared Spectrum of Protonated Corannulene H ⁺ C ₂₀ H ₁₀ in Solid <i>para</i> -Hydrogen and its Potential Contribution to Interstellar Unidentified Infrared Bands. ACS Earth and Space Chemistry, 2018, 2, 1001-1010.	2.7	15
46	Spectral Characterization of Three-Electron Two-Center (3eâ€"2c) Bonds of Gaseous CH ₃ Sâ^S(H)CH ₃ and (CH ₃ SH) ₂ ⁺ and Enhancement of the 3eâ€"2c Bond upon Protonation. Journal of Physical Chemistry Letters, 2018, 9, 3725-3730.	4.6	19
47	New experimental evidence to support roaming in the reaction Cl + isobutene (i-C4H8). Scientific Reports, 2017, 7, 40105.	3.3	4
48	Infrared absorption of methanol-water clusters (CH3OH)n(H2O), <i>n</i> = 1â€"4, recorded with the VUV-ionization/IR-depletion technique. Journal of Chemical Physics, 2017, 146, 144308.	3.0	18
49	Computational Chemical Kinetics for the Reaction of Criegee Intermediate CH ₂ OO with HNO ₃ and Its Catalytic Conversion to OH and HCO. Journal of Physical Chemistry A, 2017, 121, 3871-3878.	2.5	36
50	Infrared spectra of HSCS+, c-HSCS, and HCS2â^ produced on electron bombardment of CS2 in solid para-hydrogen. Physical Chemistry Chemical Physics, 2017, 19, 9641-9653.	2.8	2
51	Vibrational autoionization of state-selective jet-cooled methanethiol (CH ₃ SH) investigated with infrared + vacuum-ultraviolet photoionization. Physical Chemistry Chemical Physics, 2017, 19, 29153-29161.	2.8	4
52	Infrared spectra and anharmonic coupling of proton-bound nitrogen dimers N ₂ â€"H ⁺ â€"N ₂ , N ₂ â€"D ⁺ â€"N ₂ , a ¹⁵ N ₂ in solid para-hydrogen. Physical Chemistry Chemical Physics, 2017, 19, 20484-20492.	and 2.8	16
53	Modeling the CH Stretch/Torsion/Rotation Couplings in Methyl Peroxy (CH ₃ OO). Journal of Physical Chemistry A, 2017, 121, 9619-9630.	2.5	6
54	Infrared Spectra of the 1-Chloromethyl-1-methylallyl and 1-Chloromethyl-2-methylallyl Radicals Isolated in Solid <i>para</i> -Hydrogen. Journal of Physical Chemistry A, 2017, 121, 8771-8784.	2.5	1

#	Article	IF	CITATIONS
55	Infrared absorption spectra of partially deuterated methoxy radicals CH2DO and CHD2O isolated in solid <i>para</i> -hydrogen. Journal of Chemical Physics, 2017, 147, 154305.	3.0	16
56	Reaction of H + HONO in solid para-hydrogen: infrared spectrum of ˙ONH(OH). Physical Chemistry Chemical Physics, 2017, 19, 16169-16177.	2.8	22
57	Infrared spectra of two isomers of protonated carbonyl sulfide (HOCS+ and HSCO+) and <i>t</i> -HOCS in solid <i>para</i> -hydrogen. Journal of Chemical Physics, 2016, 145, 164308.	3.0	4
58	Laser-induced fluorescence of NO isolated in solid p-H2. Chemical Physics Letters, 2016, 665, 53-58.	2.6	6
59	Infrared absorption of <i>t</i> -HOCO+, H+(CO2)2, and HCO2â^' produced in electron bombardment of CO2 in solid <i>para</i> -H2. Journal of Chemical Physics, 2016, 145, 014306.	3.0	9
60	Infrared absorption of 1-chloro-2-methyl-2-propyl [\hat{a} C(CH3)2CH2Cl] and 2-chloro-2-methylpropyl [\hat{a} CH2C(CH3)2Cl] radicals produced in the addition reactions of Cl with isobutene ($\langle i \rangle i \langle j \rangle$ -C4H8) in solid $\langle i \rangle$ para $\langle j \rangle$ -hydrogen. Journal of Chemical Physics, 2016, 145, 134302.	3.0	4
61	Infrared spectral identification of the Criegee intermediate (CH3)2COO. Journal of Chemical Physics, 2016, 145, 154303.	3.0	23
62	Infrared spectra of ovalene (C ₃₂ H ₁₄) and hydrogenated ovalene (C ₃₂ H _{E™) in solid para-hydrogen. Physical Chemistry Chemical Physics, 2016, 18, 28864-28871.}	2.8	11
63	THE INFRARED SPECTRUM OF PROTONATED OVALENE IN SOLID PARA-HYDROGEN AND ITS POSSIBLE CONTRIBUTION TO INTERSTELLAR UNIDENTIFIED INFRARED EMISSION. Astrophysical Journal, 2016, 825, 96.	4.5	25
64	Manifestations of Torsion-CH Stretch Coupling in the Infrared Spectrum of CH ₃ OO. Journal of Physical Chemistry A, 2016, 120, 4827-4837.	2.5	9
65	Infrared absorption spectrum of the simplest deuterated Criegee intermediate CD2OO. Journal of Chemical Physics, 2016, 145, 044305.	3.0	6
66	Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates. Journal of Chemical Physics, 2015, 143, 020901.	3.0	151
67	Infrared identification of the Criegee intermediates syn- and anti-CH3CHOO, and their distinct conformation-dependent reactivity. Nature Communications, 2015, 6, 7012.	12.8	74
68	Two HCl-Elimination Channels and Two CO-Formation Channels Detected with Time-Resolved Infrared Emission upon Photolysis of Acryloyl Chloride [CH ₂ CHC(O)Cl] at 193 nm. Journal of Physical Chemistry A, 2015, 119, 7293-7304.	2.5	8
69	Infrared Identification of Proton-Bound Rare-Gas Dimers (XeHXe) ⁺ , (KrHKr) ⁺ , and (KrHXe) ⁺ and Their Deuterated Species in Solid Hydrogen. Journal of Physical Chemistry A, 2015, 119, 2651-2660.	2.5	23
70	Infrared absorption of iodomethylperoxy (<i>syn</i> -ICH ₂ OO) radical generated upon photolysis of CH ₂ I ₂ and O ₂ in solid <i>para</i> -H ₂ . Molecular Physics, 2015, 113, 2148-2158.	1.7	9
71	Infrared absorption of CH3O and CD3O radicals isolated in solid para-H2. Journal of Molecular Spectroscopy, 2015, 310, 57-67.	1.2	30
72	Introduction to the special issue on Spectroscopy of Radicals and Ions in Memory of Marilyn Jacox. Journal of Molecular Spectroscopy, 2015, 310, 1-2.	1.2	0

#	Article	IF	Citations
73	Infrared spectrum of the simplest Criegee intermediate CH2OO at resolution 0.25 cmâ 1 and new assignments of bands $2\langle i\rangle \hat{l}/2\langle i\rangle 9$ and $\langle i\rangle \hat{l}/2\langle i\rangle 5$. Journal of Chemical Physics, 2015, 142, 214301.	3.0	37
74	Simultaneous Infrared Detection of the ICH ₂ OO Radical and Criegee Intermediate CH ₂ OO: The Pressure Dependence of the Yield of CH ₂ OO in the Reaction CH ₂ I + O ₂ . Journal of Physical Chemistry Letters, 2015, 6, 4610-4615.	4.6	30
75	Reaction dynamics of $O(1D)$ + HCOOD/DCOOH investigated with time-resolved Fourier-transform infrared emission spectroscopy. Journal of Chemical Physics, 2014, 141, 154313.	3.0	7
76	Infrared absorption of gaseous CH2BrOO detected with a step-scan Fourier-transform absorption spectrometer. Journal of Chemical Physics, 2014, 141, 164302.	3.0	11
77	Critical interpretation of CH– and OH– stretching regions for infrared spectra of methanol clusters (CH3OH) <i>n</i> (<i>n</i> = 2–5) using self-consistent-charge density functional tight-binding molecular dynamics simulations. Journal of Chemical Physics, 2014, 141, 094303.	3.0	17
78	Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry. Nature Chemistry, 2014, 6, 477-483.	13.6	125
79	Infrared Spectra of Protonated Coronene and Its Neutral Counterpart in Solid Parahydrogen: Implications for Unidentified Interstellar Infrared Emission Bands. Angewandte Chemie - International Edition, 2014, 53, 1021-1024.	13.8	37
80	Infrared spectra of free radicals and protonated species produced in para-hydrogen matrices. Physical Chemistry Chemical Physics, 2014, 16, 2200.	2.8	73
81	Detailed mechanism of the CH2I + O2 reaction: Yield and self-reaction of the simplest Criegee intermediate CH2OO. Journal of Chemical Physics, 2014, 141, 104308.	3.0	93
82	Transient Infrared Absorption Spectra of Reaction Intermediates Detected with a Stepâ€scan Fourierâ€transform Infrared Spectrometer. Journal of the Chinese Chemical Society, 2014, 61, 47-58.	1.4	24
83	Bimolecular reaction of CH3 + CO in solid $\langle i \rangle p \langle i \rangle$ -H2: Infrared absorption of acetyl radical (CH3CO) and CH3-CO complex. Journal of Chemical Physics, 2014, 140, 244303.	3.0	16
84	Femtosecond Excitonic Relaxation Dynamics of Perovskite on Mesoporous Films of Al ₂ O ₃ and NiO Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 9339-9342.	13.8	57
85	Alcohol dimers – how much diagonal OH anharmonicity?. Physical Chemistry Chemical Physics, 2014, 16, 15948-15956.	2.8	43
86	Femtosecond Infrared Transient Absorption Dynamics of Benzimidazole-Based Ruthenium Complexes on TiO ₂ Films for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16904-16911.	3.1	20
87	Topology of conical/surface intersections among five low-lying electronic states of CO2: Multireference configuration interaction calculations. Journal of Chemical Physics, 2013, 139, 154302.	3.0	11
88	Infrared Absorption Spectrum of the Simplest Criegee Intermediate CH ₂ OO. Science, 2013, 340, 174-176.	12.6	242
89	Formation and infrared absorption of protonated naphthalenes (1-C ₁₀ H ₉ +) and their neutral counterparts in solid para-hydrogen. Physical Chemistry Chemical Physics, 2013, 15, 1907-1917.	2.8	31
90	Effects of Hydrogen Bonding on Internal Conversion of GFP-like Chromophores. II. The <i>meta</i> h-Amino Systems. Journal of Physical Chemistry B, 2013, 117, 2705-2716.	2.6	38

#	Article	IF	Citations
91	Effects of Hydrogen Bonding on Internal Conversion of GFP-like Chromophores. I. The <i>para</i> -Amino Systems. Journal of Physical Chemistry B, 2013, 117, 2695-2704.	2.6	36
92	Infrared Spectra of Protonated Pyrene and Its Neutral Counterpart in Solid <i>para</i> -Hydrogen. Journal of Physical Chemistry Letters, 2013, 4, 1989-1993.	4.6	32
93	Infrared Spectra of the 1-Pyridinium (C ₅ H ₅ NH ⁺) Cation and Pyridinyl (C ₅ H ₅ NH and 4-C ₅ H ₆ N) Radicals Isolated in Solid <i>para-</i> Hydrogen. Journal of Physical Chemistry A, 2013, 117, 13680-13690.	2.5	46
94	Infrared identification of the if -complex of Cl-C6H6 in the reaction of chlorine atom and benzene in solid i -hydrogen. Journal of Chemical Physics, 2013, 138, 074310.	3.0	9
95	Reactions between atomic chlorine and pyridine in solid <i>para</i> -hydrogen: Infrared spectrum of the 1-chloropyridinyl (C5H5Nâ^'Cl) radical. Journal of Chemical Physics, 2013, 138, 054307.	3.0	9
96	Infrared absorption of 3-propenonyl (â«CH2CHCO) radical generated upon photolysis of acryloyl chloride [CH2CHC(O)Cl] in solid para-H2. Journal of Chemical Physics, 2013, 139, 084320.	3.0	13
97	A new method for investigating infrared spectra of protonated benzene (C6H7+) and cyclohexadienyl radical (<i><c< i="">-C6H7) using <i>para</i>-hydrogen. Journal of Chemical Physics, 2012, 136, 154304.</c<></i>	3.0	50
98	Infrared absorption of trans-1-chloromethylallyl and trans-1-methylallyl radicals produced in photochemical reactions of trans-1,3-butadiene and Câ,,"2 in solid para-hydrogen. Journal of Chemical Physics, 2012, 137, 084310.	3.0	21
99	Extrinsic charge traps in disordered organic materials. Journal of Applied Physics, 2012, 112, 073715.	2.5	0
100	Infrared absorption of CH3OSO and CD3OSO radicals produced upon photolysis of CH3OS(O)Cl and CD3OS(O)Cl in <i>p</i> -H2 matrices. Journal of Chemical Physics, 2012, 136, 124510.	3.0	14
101	Infrared spectrum of the 2-chloroethyl radical in solid para-hydrogen. Physical Chemistry Chemical Physics, 2012, 14, 1014-1029.	2.8	22
102	Electroabsorption and Electrophotoluminescence of Poly(2,3-diphenyl-5-hexyl-p-phenylene vinylene). Journal of Physical Chemistry C, 2012, 116, 14789-14795.	3.1	10
103	Design and Characterization of Heteroleptic Ruthenium Complexes Containing Benzimidazole Ligands for Dye-Sensitized Solar Cells: The Effect of Fluorine Substituents on Photovoltaic Performance. Journal of Physical Chemistry Letters, 2012, 3, 1830-1835.	4.6	42
104	Infrared Absorption of Gaseous Benzoyl Radical C6H5CO Recorded with a Step-Scan Fourier-Transform Spectrometer. Journal of Physical Chemistry A, 2012, 116, 6366-6374.	2.5	9
105	Study of the reactive excited-state dynamics of delipidated bacteriorhodopsin upon surfactant treatments. Chemical Physics Letters, 2012, 539-540, 151-156.	2.6	6
106	Dynamics of the reactions of O(1D) with CD3OH and CH3OD studied with time-resolved Fourier-transform IR spectroscopy. Journal of Chemical Physics, 2012, 137, 164307.	3.0	19
107	Infrared absorption of methanethiol clusters (CH3SH) $\langle i\rangle$ n $\langle i\rangle$, $\langle i\rangle$ n $\langle i\rangle$ = 2â \in "5, recorded with a time-of-flight mass spectrometer using IR depletion and VUV ionization. Journal of Chemical Physics, 2012, 137, 234307.	3.0	16
108	Blue/near UV light emission from hybrid InN/TiO2 nanoparticle films. Journal of Materials Chemistry, 2011, 21, 8540.	6.7	2

#	Article	IF	Citations
109	Infrared absorption of methanol clusters (CH3OH) <i>n</i> with <i>n</i> = $2\hat{a}$ °6 recorded with a time-of-flight mass spectrometer using infrared depletion and vacuum-ultraviolet ionization. Journal of Chemical Physics, 2011, 134, 144309.	3.0	73
110	He I Ultraviolet Photoelectron Spectroscopy of Benzene and Pyridine in Supersonic Molecular Beams Using Photoelectron Imaging. Journal of Physical Chemistry A, 2011, 115, 2953-2965.	2.5	47
111	Infrared spectrum of mass-selected CH3S radicals investigated with infrared+vacuum ultraviolet photoionization. Chemical Physics Letters, 2011, 515, 1-6.	2.6	19
112	Photodissociation Dynamics of Benzaldehyde (C ₆ H ₅ CHO) at 266, 248, and 193â€nm. Chemistry - an Asian Journal, 2011, 6, 2961-2976.	3.3	21
113	Infrared absorption of CH ₃ OSO detected with time-resolved Fourier-transform spectroscopy. Journal of Chemical Physics, 2011, 134, 094304.	3.0	13
114	Reactions between chlorine atom and acetylene in solid <i>para</i> -hydrogen: Infrared spectrum of the 1-chloroethyl radical. Journal of Chemical Physics, 2011, 135, 174302.	3.0	14
115	Infrared absorption of CH3SO2 observed upon irradiation of a <i>p</i> -H2 matrix containing CH3I and SO2. Journal of Chemical Physics, 2011, 134, 124314.	3.0	24
116	Infrared absorption of gaseous benzoylperoxy radical C6H5C(O)OO recorded with a step-scan Fourier-transform spectrometer. Journal of Chemical Physics, 2011, 135, 224302.	3.0	10
117	Franck–Condon simulation of the A 1B2 → X 1A1 dispersed fluorescence spectrum of fluorobenzene and its rate of the internal conversion. Journal of Chemical Physics, 2011, 134, 094313.	3.0	16
118	Advances in Use of <i>p</i> â€H ₂ as a Novel Host for Matrix IR Spectroscopy. Journal of the Chinese Chemical Society, 2010, 57, 771-782.	1.4	34
119	Ordering, Interaction, and Reactivity of the Lowâ€Lying nÏ€* and ππ* Excited Triplet States of Acetophenone Derivatives. Angewandte Chemie - International Edition, 2010, 49, 9201-9205.	13.8	21
120	Diminished cage effect in solid p-H2: Infrared spectra of CISCS, CICS, and CISC in an irradiated p-H2 matrix containing CI2 and CS2. Journal of Chemical Physics, 2010, 132, 164303.	3.0	30
121	Transient infrared spectra of CH3SOO and CH3SO observed with a step-scan Fourier-transform spectrometer. Journal of Chemical Physics, 2010, 133, 184303.	3.0	30
122	Diminished cage effect in solid p-H2: Infrared absorption of CH3S observed from photolysis in situ of CH3SH, CH3SCH3, or CH3SSCH3 isolated in p-H2 matrices. Journal of Chemical Physics, 2010, 133, 164316.	3.0	32
123	Electric-Field-Induced Enhancement/Quenching of Photoluminescence of Ï∈-Conjugated Polymer S3-PPV: Excitation Energy Dependence. Journal of Physical Chemistry B, 2010, 114, 6258-6265.	2.6	14
124	Site-Selective Reaction of CI + Propene in Solid i> para / i> - Hydrogen: Formation of 2-Chloropropyl Radicals. Journal of Physical Chemistry Letters, 2010, 1, 2956-2961.	4.6	23
125	Theoretical Interpretation of the UVâ^'vis Spectrum of the CS ₂ /Cl Complex in the Spectral Region 320â^'550 nm. Journal of Physical Chemistry A, 2010, 114, 11008-11016.	2.5	2
126	Synthesis and electron-transfer properties of benzimidazole-functionalized ruthenium complexes for highly efficient dye-sensitized solar cells. Chemical Communications, 2010, 46, 8992.	4.1	73

#	Article	IF	CITATIONS
127	Transient infrared absorption of t-CH3C(O)OO, c-CH3C(O)OO, and α-lactone recorded in gaseous reactions of CH3CO and O2. Journal of Chemical Physics, 2010, 132, 114303.	3.0	27
128	Infrared absorption of GeNNO isolated in solid Ar. Journal of Chemical Physics, 2009, 131, 144504.	3.0	1
129	Comparison of geometric, electronic, and vibrational properties for all pentagon/hexagonâ€bearing isomers of fullerenes C ₃₈ , C ₄₀ , and C ₄₂ . International Journal of Quantum Chemistry, 2009, 109, 1999-2011.	2.0	20
130	Femtosecond Transient Absorption of Zinc Porphyrins with Oligo(phenylethylnyl) Linkers in Solution and on TiO ₂ Films. Journal of Physical Chemistry C, 2009, 113, 11524-11531.	3.1	64
131	Distribution of Vibrational States of CO ₂ in the Reaction O(¹ D) + CO ₂ from Time-Resolved Fourier Transform Infrared Emission Spectra. Journal of Physical Chemistry A, 2009, 113, 3431-3437.	2.5	12
132	Electric Field Effects on Photoluminescence of Polyfluorene Thin Films: Dependence on Excitation Wavelength, Field Strength, and Temperature. Journal of Physical Chemistry C, 2009, 113, 11907-11915.	3.1	24
133	Reaction Dynamics of O($\langle sup \rangle 1 \langle sup \rangle D, \langle sup \rangle 3 \langle sup \rangle P$) + OCS Studied with Time-Resolved Fourier Transform Infrared Spectroscopy and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2009, 113, 13260-13272.	2.5	15
134	Infrared absorption of gaseous c-ClCOOH and t-ClCOOH recorded with a step-scan Fourier-transform spectrometer. Journal of Chemical Physics, 2009, 130, 174304.	3.0	7
135	The $\hat{l}\frac{1}{2}7$, $\hat{l}\frac{1}{2}8$, and $\hat{l}\frac{1}{2}11$ bands of propynal, C2HCHO, in the 650cm \hat{a} °1 region. Journal of Molecular Spectroscopy 2008, 252, 230-238.	^y 1.2	11
136	Theoretical Investigation of Molecular Properties of the First Excited State of the Thiophenoxyl Radical. Journal of Physical Chemistry A, 2008, 112, 11998-12006.	2.5	12
137	Theoretical Investigation of Molecular Properties of the First Excited State of the Phenoxyl Radical. Journal of Physical Chemistry A, 2008, 112, 2648-2657.	2.5	19
138	Direct spectral evidence of single-axis rotation and <i>ortho</i> hydrogen-assisted nuclear spin conversion of CH3F in solid <i>para</i> hydrogen. Journal of Chemical Physics, 2008, 129, 104502.	3.0	43
139	Rovibronic bands of the AÌf B22â†xÌf B21 transition of C6H5O and C6D5O detected with cavity ringdov absorption near 1.2â€,μm. Journal of Chemical Physics, 2008, 129, 154307.	wn 3.0	15
140	Dynamics of reactions O(D1)+C6H6 and C6D6. Journal of Chemical Physics, 2008, 129, 174303.	3.0	8
141	Internal energy of HCl upon photolysis of 2-chloropropene at 193 nm investigated with time-resolved Fourier-transform spectroscopy and quasiclassical trajectories. Journal of Chemical Physics, 2008, 129, 224301.	3.0	7
142	Infrared absorption spectra of vinyl radicals isolated in solid Ne. Journal of Chemical Physics, 2008, 128, 204509.	3.0	34
143	Infrared absorption of C6H5SO2 detected with time-resolved Fourier-transform spectroscopy. Journal of Chemical Physics, 2007, 126, 134311.	3.0	10
144	Infrared absorption of gaseous CICS detected with time-resolved Fourier-transform spectroscopy. Journal of Chemical Physics, 2007, 126, 174310.	3.0	8

#	Article	IF	Citations
145	Rovibronic bands of the Ãâ†X̃ transition of CH3OO and CD3OO detected with cavity ringdown absorption near 1.2–1.4μm. Journal of Chemical Physics, 2007, 127, 044311.	3.0	37
146	Infrared absorption of gaseous CH3OO detected with a step-scan Fourier-transform spectrometer. Journal of Chemical Physics, 2007, 127, 234318.	3.0	26
147	Photoabsorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 110–144nm. Journal of Chemical Physics, 2007, 127, 154311.	3.0	21
148	Isotopic Fractionation of Nitrogen in Ammonia in the Troposphere of Jupiter. Astrophysical Journal, 2007, 657, L117-L120.	4.5	15
149	Relaxation Dynamics of Ruthenium Complexes in Solution, PMMA and TiO⟨sub⟩2⟨ sub⟩Films:  The Roles of Self-Quenching and Interfacial Electron Transfer. Journal of Physical Chemistry C, 2007, 111, 13288-13296.	3.1	29
150	Photodissociation Dynamics of Phenol. Journal of Physical Chemistry A, 2007, 111, 9463-9470.	2.5	82
151	Experimental and Theoretical Studies of Rate Coefficients for the Reaction O(3P) + C2H5OH at High Temperaturesâ€. Journal of Physical Chemistry A, 2007, 111, 6693-6703.	2.5	34
152	Biography of Ming-Chang Lin. Journal of Physical Chemistry A, 2007, 111, 6569-6571.	2.5	0
153	Infrared spectra of C2H2 under jet-cooled and para-H2 matrix conditions. Chemical Physics Letters, 2007, 435, 247-251.	2.6	25
154	Distribution of Internal States of CO from O (1D) + CO Determined with Time-Resolved Fourier Transform Spectroscopy. Journal of Physical Chemistry A, 2006, 110, 12096-12102.	2.5	6
155	Absorption Cross Sections of NH3, NH2D, NHD2, and ND3in the Spectral Range 140–220 nm and Implications for Planetary Isotopic Fractionation. Astrophysical Journal, 2006, 647, 1535-1542.	4.5	65
156	Intensities of line features in vibration-rotational bands 2–0 to 6–0 of 14N16O X2Îr and experimental evaluation of a radial function for electric dipolar moment. Infrared Physics and Technology, 2006, 47, 227-239.	2.9	10
157	The B 3ΣⰒ state of the SO radical. Journal of Molecular Spectroscopy, 2006, 238, 213-223.	1.2	17
158	Internal Rotation and Spin Conversion of CH3OH in Solid para-Hydrogen. Science, 2006, 311, 365-368.	12.6	87
159	Experimental and theoretical investigation of rate coefficients of the reaction S(P3)+OCS in the temperature range of 298–985K. Journal of Chemical Physics, 2006, 125, 164329.	3.0	24
160	Infrared absorption of CH3SO2 detected with time-resolved Fourier-transform spectroscopy. Journal of Chemical Physics, 2006, 124, 244301.	3.0	27
161	Photodissociation dynamics of fluorobenzene (C6H5F) at 157 and 193nm: Branching ratios and distributions of kinetic energy. Journal of Chemical Physics, 2006, 125, 144301.	3.0	13
162	Preparation and Spectral Characterization of Novel Species in Matrices. Journal of the Chinese Chemical Society, 2005, 52, 641-650.	1.4	13

#	Article	IF	CITATIONS
163	Photodissociation dynamics of formyl fluoride (HFCO) at 193 nm: Branching ratios and distributions of kinetic energy. Journal of Chemical Physics, 2005, 123, 074326.	3.0	13
164	Isomers of GeNO and Ge(NO)2: Production and infrared absorption of GeNO and ONGeNO in solid Ar. Journal of Chemical Physics, 2005, 123, 054321.	3.0	7
165	Experimental and theoretical studies of rate coefficients for the reaction O(P3)+CH3OH at high temperatures. Journal of Chemical Physics, 2005, 122, 244314.	3.0	12
166	Two-color resonant four-wave mixing spectroscopy of highly predissociated levels in the AlfA12 state of CH3S. Journal of Chemical Physics, 2005, 122, 124313.	3.0	12
167	Molecular elimination in photolysis of o- and p-fluorotoluene at 193 nm: Internal energy of HF determined with time-resolved Fourier transform spectroscopy. Journal of Chemical Physics, 2005, 123, 224304.	3.0	12
168	Isomers of NCO2: IR-absorption spectra of ONCO in solid Ne. Journal of Chemical Physics, 2005, 123, 174301.	3.0	10
169	Detection of Vibrationâr'Rotational Band 5âr'0 of 12C16O X1Σ+with Cavity Ringdown Absorption near 0.96 μm. Journal of Physical Chemistry A, 2005, 109, 7854-7858.	2.5	20
170	Photodissociation Dynamics of Vinyl Chloride Investigated with a Pulsed Slit-Jet and Time-Resolved Fourier-Transform Spectroscopy. Australian Journal of Chemistry, 2004, 57, 1161.	0.9	12
171	Photolysis of oxalyl chloride (ClCO)2 at 193 nm: Emission of CO(v⩽6,â€,J⩽60) detected with time-resolve Fourier-transform spectroscopy. Journal of Chemical Physics, 2004, 120, 6957-6963.	d _{3.0}	15
172	Isomers of HSCO: IR absorption spectra of t-HSCO in solid Ar. Journal of Chemical Physics, 2004, 120, 5717-5722.	3.0	10
173	Detection of CISO with time-resolved Fourier-transform infrared absorption spectroscopy. Journal of Chemical Physics, 2004, 120, 3179-3184.	3.0	21
174	Isomers of OCS[sub 2]: IR absorption spectra of OSCS and O(CS[sub 2]) in solid Ar. Journal of Chemical Physics, 2004, 121, 12371.	3.0	10
175	Quantitative spectroscopic and theoretical study of the optical absorption spectra of H2O, HOD, and D2O in the 125–145 nm region. Journal of Chemical Physics, 2004, 120, 224-229.	3.0	34
176	Experimental and quantum-chemical studies on photoionization and dissociative photoionization of CH2Br2. Journal of Chemical Physics, 2004, 120, 3270-3276.	3.0	11
177	Infrared Cavity Ringdown Spectroscopy of Jet-Cooled Polycyclic Aromatic Hydrocarbons. ChemPhysChem, 2004, 5, 321-326.	2.1	31
178	Infrared matrix-isolation spectroscopy using pulsed deposition of p-H2. Journal of Chemical Physics, 2004, 120, 1168-1171.	3.0	25
179	Experimental and theoretical investigations of rate coefficients of the reaction S([sup 3]P)+O[sub 2] in the temperature range 298–878 K. Journal of Chemical Physics, 2004, 121, 8271.	3.0	36
180	Molecular elimination in photolysis of fluorobenzene at 193 nm: Internal energy of HF determined with time-resolved Fourier-transform spectroscopy. Journal of Chemical Physics, 2004, 121, 8792-8799.	3.0	20

#	Article	IF	CITATIONS
181	Reaction dynamics of Cl+CH3SH: Rotational and vibrational distributions of HCl probed with time-resolved Fourier-transform spectroscopy. Journal of Chemical Physics, 2004, 120, 1792-1800.	3.0	13
182	Strengths of absorption features in vibration-rotational band $v=6\hat{a}\dagger v=0$ of 14N16O X2Îr in the near infrared region. Infrared Physics and Technology, 2003, 44, 199-205.	2.9	3
183	Experiments and Calculations on Rate Coefficients for Pyrolysis of SO2and the Reaction O + SO at High Temperatures. Journal of Physical Chemistry A, 2003, 107, 11020-11029.	2.5	32
184	Photolysis of Oxalyl Chloride (ClCO)2 at 248 nm: Emission of CO(v  ⩽ 3, J  ⩽ 51) Detected with Time-Resolved Fourier Transform Spectroscopy. Journal of Physical Chemistry A, 2003, 107, 2389-2393.	2.5	21
185	Ultraviolet Absorption Spectrum of Cyclic S2O in Solid Ar. Journal of Physical Chemistry A, 2003, 107, 6944-6947.	2.5	21
186	Dissociative photoionization of CH2Cl2 and enthalpy of formation of CHCl+: Experiments and calculations. Journal of Chemical Physics, 2003, 118, 62-69.	3.0	30
187	Isomers of Ge2N2: Production and infrared absorption of GeNNGe in solid N2. Journal of Chemical Physics, 2003, 118, 9710-9718.	3.0	13
188	Investigation of some Rydberg states of ketene by two-photon resonance-enhanced multiphoton ionization spectroscopy. Journal of Chemical Physics, 2003, 119, 7772-7784.	3.0	3
189	Reaction dynamics of Cl+H2S: Rotational and vibrational distribution of HCl probed with time-resolved Fourier-transform spectroscopy. Journal of Chemical Physics, 2003, 119, 4229-4236.	3.0	9
190	Highly predissociative levels of CH3S (A 2A1) detected with degenerate four-wave mixing. Journal of Chemical Physics, 2003, 119, 12335-12341.	3.0	15
191	STATE-RESOLVEDDYNAMICS OFPHOTOFRAGMENTATION. Annual Review of Physical Chemistry, 2003, 54, 215-244.	10.8	37
192	Nonresonant two-photon mass analyzed threshold ionization and zero kinetic energy photoelectron investigation of the XÌf 2B1 ground state of CH2CO+ and CD2CO+. Journal of Chemical Physics, 2002, 117, 6546-6555.	3.0	6
193	Quantitative spectral analysis of HCl and DCl in 120–220 nm: Effects of singlet–triplet mixing. Journal of Chemical Physics, 2002, 117, 4293-4298.	3.0	28
194	Experimental and theoretical studies on vacuum ultraviolet absorption cross sections and photodissociation of CH3OH, CH3OD, CD3OH, and CD3OD. Journal of Chemical Physics, 2002, 117, 1633-1640.	3.0	64
195	Experimental and theoretical studies on Rydberg states of CH2CO in the region 120–220 nm. Journal of Chemical Physics, 2002, 117, 4306-4316.	3.0	12
196	Thermal Analysis and PLIF Imaging of Reacting Flow behind a Disc Stabilizer with a Central Fuel Jet. Combustion Science and Technology, 2002, 174, 71-92.	2.3	13
197	Theoretical Calculations and Infrared Absorption Spectra of ap- and sp-Methyl Vinyl Ketone in Solid Ar. Journal of Physical Chemistry A, 2002, 106, 1190-1195.	2.5	9
198	Isomers of S2O: Infrared absorption spectra of cyclic S2O in solid Ar. Journal of Chemical Physics, 2002, 117, 6655-6661.	3.0	30

#	Article	IF	CITATIONS
199	Experimental and Theoretical Studies of the Rate Coefficients of the Reaction O(3P) + HCl at High Temperatures. Journal of Physical Chemistry A, 2002, 106, 10231-10237.	2.5	21
200	Three-center versus four-center elimination of haloethene: Internal energies of HCl and HF on photolysis of CF2CHCl at 193 nm determined with time-resolved Fourier-transform spectroscopy. Journal of Chemical Physics, 2002, 117, 9785-9792.	3.0	27
201	Absorption cross sections and solar photodissociation rates of deuterated isotopomers of methanol. Journal of Geophysical Research, 2002, 107, SIA 7-1-SIA 7-5.	3.3	8
202	The Matrix Isolation Spectrum of the CH2+ Ion. Journal of Molecular Spectroscopy, 2002, 216, 419-423.	1.2	9
203	Infrared spectra of CO in absorption and evaluation of radial functions for potential energy and electric dipolar moment. Theoretical Chemistry Accounts, 2002, 108, 85-97.	1.4	42
204	Two-color resonant four-wave mixing spectroscopy of the X1A1(5 0 0) state of SO2 in a supersonic jet. Chemical Physics Letters, 2002, 362, 235-242.	2.6	5
205	Three-center versus four-center elimination in photolysis of vinyl fluoride and vinyl bromide at 193 nm: Bimodal rotational distribution of HF and HBr ($v\hat{a}$ © $1/25$) detected with time-resolved Fourier transform spectroscopy. Journal of Chemical Physics, 2001, 114, 7396-7406.	3.0	56
206	Formation of CH3CFCl+ from Photoionization of CH3CFCl2:  An Application of Threshold Photoelectron Photoion Coincidence (TPEPICO) Technique. Journal of Physical Chemistry A, 2001, 105, 1226-1231.	2.5	7
207	Enhancement of Deuterated Ethane on Jupiter. Astrophysical Journal, 2001, 551, L93-L96.	4.5	47
208	Absorption Cross Sections of HC[CLC]I[/CLC] and DC[CLC]I[/CLC] at 135–232 Nanometers: Implications for Photodissociation on Venus. Astrophysical Journal, 2001, 559, L179-L182.	4.5	50
209	Photodissociation thresholds of OH produced from CH3OH in solid neon and argon. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 1461-1464.	1.6	11
210	Temperature dependence of absorption cross-section of H2O, HOD, and D2O in the spectral region 140–193nm. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 1572-1576.	1.6	59
211	Detection of CICO with time-resolved Fourier-transform infrared absorption spectroscopy. Chemical Physics Letters, 2001, 333, 365-370.	2.6	31
212	Ultraviolet absorption spectrum of cyclic CS2 in solid Ar. Chemical Physics Letters, 2001, 336, 71-75.	2.6	10
213	Photodissociation of glycidyl azide polymer with a Nd:YAG laser at 1.064 νm. Combustion and Flame, 2001, 126, 1736-1745.	5. 2	9
214	I. Three-center versus four-center HCl-elimination in photolysis of vinyl chloride at 193 nm: Bimodal rotational distribution of HCl ($vample math{3} = 0.000$) detected with time-resolved Fourier-transform spectroscopy. Journal of Chemical Physics, 2001, 114, 160.	3.0	52
215	Isomers of SNO2: Production and infrared spectra of cis- and trans-OSNO from irradiated inert matrices containing OCS and NO2. Journal of Chemical Physics, 2001, 115, 10694-10700.	3.0	27
216	Observation of CH4 ($v2=1$ or $v4=1$) in the reaction Cl+CH4 with time-resolved Fourier-transform infrared absorption spectroscopy. Journal of Chemical Physics, 2001, 115, 6513-6521.	3.0	12

#	Article	IF	CITATIONS
217	Application of time-resolved Fourier-transform spectroscopy to dissociation dynamics. , 2001, , .		O
218	Wavenumbers, strengths, widths and shifts with pressure of lines in four bands of gaseous 16O2 in the systems all "gâ" X3l½gâ" and bll½g+â" X3l½gâ". Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 64, 467-482.	2.3	55
219	Production and Infrared Absorption Spectrum of ClSO2in Matricesâ€. Journal of Physical Chemistry A, 2000, 104, 3613-3619.	2.5	28
220	Production and IR Absorption of Cyclic CS2in Solid Ar. Journal of the American Chemical Society, 2000, 122, 661-667.	13.7	31
221	Laser-Induced Phosphorescence of SO2 in Solid Neon:  Direct Observation of the b̃3A2 State in the 16OS18O Molecule. Journal of Physical Chemistry A, 2000, 104, 771-776.	2.5	19
222	The Visible Absorption Spectrum of 16OBr16O and 18OBr18O Isolated in Solid Ne. Journal of Physical Chemistry A, 2000, 104, 6951-6955.	2.5	16
223	Temperature Dependence of Rate Coefficients of Reactions of NO2with CH3S and C2H5S. Journal of Physical Chemistry A, 2000, 104, 5525-5529.	2.5	17
224	Photodissociation of 1,1-difluoroethene (CH2CF2) at 193 nm monitored with step-scan time-resolved Fourier-transform infrared emission spectroscopy. Journal of Chemical Physics, 1999, 111, 9233-9241.	3.0	39
225	Highly predissociative levels of the D 2Πstate of CH studied with the two-color resonant four-wave mixing technique. Journal of Chemical Physics, 1999, 111, 4942-4947.	3.0	16
226	Photo-induced fractionation of water isotopomers in the Martian atmosphere. Geophysical Research Letters, 1999, 26, 3657-3660.	4.0	75
227	Two-Color Resonant Four-Wave Mixing Spectra of the C2Σ+â^'X2Î(1â^'1) Band of CH in a Flame. Journal of Physical Chemistry A, 1999, 103, 6162-6166.	2.5	16
228	Observation of saturation dip in degenerate four-wave mixing and two-color resonant four-wave mixing spectra of jet-cooled CH. Chemical Physics Letters, 1998, 297, 300-306.	2.6	16
229	Photoionization studies of sulfur radicals and products of their reactions. Journal of Synchrotron Radiation, 1998, 5, 1041-1043.	2.4	9
230	Photoionization spectra and ionization energies of HSCl, HSSSH, SSCl, and HSSCl formed in the reaction system Cl/Cl2/H2S. Journal of Chemical Physics, 1998, 108, 6197-6204.	3.0	23
231	Isomers of N2O3: Observation of trans-cis N2O3 in solid Ar. Journal of Chemical Physics, 1998, 109, 10446-10455.	3.0	35
232	Highly predissociative levels of CH B 2Σâ^' state detected with two-color resonant four-wave mixing spectroscopy. Journal of Chemical Physics, 1998, 109, 3824-3830.	3.0	29
233	Laser photolysis of OCIO in solid Ne, Ar, and Kr. II. Site selectivity, mode specificity, and effects of matrix hosts. Journal of Chemical Physics, 1998, 109, 988-996.	3.0	15
234	Absorption and fluorescence of OClO Ã 2A2–X̃ 2B1 in solid Ne, Ar, and Kr. I. Vibrationally unrelaxed emission. Journal of Chemical Physics, 1998, 109, 978-987.	Ãfậ†'XÌf	20

#	Article	IF	Citations
235	Adsorption and photon-stimulated desorption of CCl4 on an Al(111) surface investigated with synchrotron radiation. Journal of Chemical Physics, 1998, 109, 8027-8035.	3.0	4
236	Laser-photolysis/time-resolved Fourier-transform absorption spectroscopy: Formation and quenching of HCl(v) in the chain reaction Cl/Cl2/H2. Journal of Chemical Physics, 1997, 107, 6499-6502.	3.0	18
237	Photoionization efficiency spectrum and ionization energy of C2H5SO. Journal of Chemical Physics, 1997, 107, 8794-8799.	3.0	7
238	Valence-level photoemission spectroscopy and photon-stimulated ion desorption studies of CH3Cl adsorbed on Al(111) surface using synchrotron radiation. Surface Science, 1997, 385, L1010-L1015.	1.9	9
239	IR Spectra and Vibrational Analysis of Isotopomers of KNO3in Solid Ar. Journal of Molecular Spectroscopy, 1997, 183, 119-128.	1.2	14
240	Effect of polarization on stimulated emission pumping spectroscopy of the B3î0+uâ^'X1Σg+ system of jet-cooled Br2 via two-colour resonant four-wave mixing. Chemical Physics Letters, 1997, 269, 22-28.	2.6	8
241	Spectra of the vibronic transition A-X of S2+ in solid neon. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1996, 52, 1727-1735.	3.9	6
242	Vibronic analysis of the B̃ 2A′–X̃ 2A″ laserâ€induced fluorescence of jetâ€cooled C2H5S. Jou Physics, 1996, 105, 5722-5730.	ırnal of Ch	emical
243	Photoionization spectra and ionization thresholds of CH3SO, CH3SOH, and CH3SS(O)CH3. Journal of Chemical Physics, 1996, 105, 7402-7411.	3.0	22
244	Isomers of SO3: Infrared absorption of OSOO in solid argon. Journal of Chemical Physics, 1996, 104, 5745-5753.	3.0	40
245	Infrared absorption of cyclic―and transâ€NaNO2 and KNO2 in solid argon. Journal of Chemical Physics, 1996, 104, 935-941.	3.0	17
246	Isomers of SO2: Infrared absorption of SOO in solid argon. Journal of Chemical Physics, 1996, 105, 9454-9460.	3.0	40
247	Laser-Induced Fluorescence and Phosphorescence of C60Isolated in Solid Ne. The Journal of Physical Chemistry, 1996, 100, 3927-3932.	2.9	39
248	New Spectral Techniques: Timeâ€Resolved Fourierâ€Transform Spectroscopy and Twoâ€Color Laserâ€Induced Grating Spectroscopy. Journal of the Chinese Chemical Society, 1995, 42, 205-213.	1.4	2
249	Ultraviolet absorption spectra of cis and trans potassium peroxynitrite (KOONO) in solid argon. Chemical Physics Letters, 1995, 242, 147-152.	2.6	25
250	Laser-induced fluorescence of the A2Ï€u-X2Ï€g transition of CS2+ in solid Ne. Reanalysis of vibronic spectra. Chemical Physics Letters, 1995, 244, 177-182.	2.6	6
251	Threshold and cage effect for photodissociation of H2O in solid Ne and Ar. Journal of Chemical Physics, 1995, 103, 6303-6304.	3.0	15
252	Photodissociation of HNO3 at 193 nm: Nearâ€infrared emission of NO detected by timeâ€resolved Fourier transform spectroscopy. Journal of Chemical Physics, 1995, 103, 4879-4886.	3.0	35

#	Article	IF	CITATIONS
253	Detection of CH in an oxyacetylene flame using twoâ€color resonant fourâ€wave mixing technique. Journal of Chemical Physics, 1995, 103, 9941-9946.	3.0	37
254	Infrared absorption of cis―and transâ€alkaliâ€metal peroxynitrites (MOONO, M=Li, Na, and K) in solid argon. Journal of Chemical Physics, 1995, 103, 4026-4034.	3.0	33
255	Detailed rate coefficients and the enthalpy change of the equilibrium reaction OH+C6H6↔MHOC6H6 over the temperature range 345–385 K. Journal of Chemical Physics, 1994, 101, 2098-2105.	3.0	19
256	Kinetics of the reaction of HSO with O3 at temperatures 273–423 K. Journal of Chemical Physics, 1994, 100, 387-392.	3.0	17
257	Infrared absorption of cis–cis peroxynitrous acid (HOONO) in solid argon. Journal of Chemical Physics, 1994, 101, 5494-5499.	3.0	57
258	Ultraviolet absorption of cis-cis and trans-perp peroxynitrous acid (HOONO) in solid argon. Chemical Physics Letters, 1994, 229, 357-361.	2.6	19
259	Temperature Dependence of the Rate Coefficient of the Reaction OH + CF3CH2F over the Range 255-424 K. Journal of the Chinese Chemical Society, 1994, 41, 645-649.	1.4	2
260	Vibronic analysis of the Alfâ†'Xlf laserâ€induced fluorescence of jetâ€cooled methoxy (CH3O) radical. Journal of Chemical Physics, 1993, 99, 9465-9471.	3.0	45
261	Infrared absorption of 2â€hydroxyethyl (HOCH2CH2) in solid Ar. Journal of Chemical Physics, 1993, 99, 3272-3276.	3.0	18
262	<title>Spectroscopic studies of small radicals (CH3S)</title> ., 1993, 1858, 44.		2
263	Lifetimes and Quenching of the Ä€ ² A′(Ï3′ = 0 – 2) → XÌ,, ² A″ Fluorescence Journal of the Chinese Chemical Society, 1993, 40, 407-412.	e of HSO. 1.4	4
264	Laserâ€induced emission of SO in matrices: The cÌf 1Σâ^'â†'aÌf 1Î" and the AÌf' 3Î"â†'XÌf 3 Physics, 1992, 96, 8054-8061.	룉^' trans	itions. Jourr 22
265	Photolysis of nitric acid in solid nitrogen. Journal of Chemical Physics, 1992, 97, 7167-7173.	3.0	37
266	The enthalpy change and the detailed rate coefficients of the equilibrium reaction OH+C2H2=MHOC2H2 over the temperature range 627–713 K. Journal of Chemical Physics, 1992, 97, 3092-3099.	3.0	14
267	Detailed rate coefficients and the enthalpy change of the equilibrium reaction OH+C2H4=MHOC2H4 over the temperature range 544–673 K. Journal of Chemical Physics, 1992, 96, 377-386.	3.0	51
268	Intensities of lines in the band a $1\hat{1}$ "g ($v\hat{a}\in^2=0$) \hat{a} " $X3\hat{1}\hat{z}\hat{a}$ "g ($v\hat{a}\in^3=0$) of $16O2$ in absorption. Spectrochimica Acta A: Molecular Spectroscopy, 1992, 48, 1227-1230.	Part 0:1	22
269	Kinetics of the reaction hydroxyl + ethene in helium, nitrogen, and oxygen at low pressure. The Journal of Physical Chemistry, 1991, 95, 1253-1257.	2.9	21
270	Kinetics of the reactions of mercaptooxomethylthio with oxygen, nitric oxide, and nitrogen dioxide. The Journal of Physical Chemistry, 1991, 95, 7726-7732.	2.9	16

#	Article	IF	Citations
271	Termolecular rate coefficients and the standard enthalpy of the reaction hydroxyl + carbon disulfide + M .fwdarw. HOCS2 + M. The Journal of Physical Chemistry, 1991, 95, 379-386.	2.9	24
272	Production and trapping of HOSO2 from the gaseous reaction OH+SO2: the infrared absorption of HOSO2 in solid argon. Chemical Physics Letters, 1991, 177, 195-199.	2.6	20
273	Photolysis of nitric acid in solid argon: the infrared absorption of peroxynitrous acid (HOONO). The Journal of Physical Chemistry, 1991, 95, 2814-2817.	2.9	97
274	Vibronic analysis of the Alf 2Al–Xlf 2E laserâ€induced fluorescence of jetâ€cooled CH3S. Journal of C Physics, 1991, 95, 66-72.	Chemical 3.0	43
275	Kinetics of the reaction hydroxyl + sulfur dioxide in helium, nitrogen, and oxygen at low pressure. The Journal of Physical Chemistry, 1990, 94, 4535-4540.	2.9	28
276	Kinetics of the reaction hydroxyl + ammonia in the range 273-433 K. The Journal of Physical Chemistry, 1990, 94, 5261-5265.	2.9	49
277	Radiative lifetimes of the AÌf 2A1 (v3=0–2) states of CH3S. Journal of Chemical Physics, 1990, 93, 4487-44	1880	14
278	Laserâ€induced emission of CH3O in solid argon. Journal of Chemical Physics, 1989, 90, 81-86.	3.0	29
279	Production and trapping of gaseous dimeric ClO: The infrared spectrum of chlorine peroxide (ClOOCl) in solid argon. Journal of Chemical Physics, 1989, 90, 5930-5935.	3.0	40
280	Linestrengths in the 3–0 vibration-rotational band of gaseous 1H35Cl and the electric dipole moment function. Chemical Physics Letters, 1989, 159, 239-243.	2.6	22
281	Strengths of absorption lines in the vibration-rotational band ν = 5â†Î½ = 0 of NO X2Ï€r. Infrared Physics, 1988, 28, 321-324.	0.5	5
282	The infrared absorption spectrum of hydroxyl radicals in solid argon. Chemical Physics Letters, 1988, 151, 109-115.	2.6	46
283	Linestrengths of the band. Journal of Quantitative Spectroscopy and Radiative Transfer, 1988, 39, 375-380.	2.3	12
284	Red and nearâ€infrared laserâ€induced emission of S2 in an Ar matrix. Journal of Chemical Physics, 1988, 89, 13-19.	3.0	14
285	Radiative lifetime and quenching of the AÌ∫ 2A1 state of the CH3O radical. Journal of Chemical Physics, 1988, 88, 171-175.	3.0	21
286	Product Determination of Gaseous Radical Reactions Using Matrix Isolationâ€Ftir Detection. Journal of the Chinese Chemical Society, 1987, 34, 161-168.	1.4	5
287	Rate constant for the reaction of OH radicals with dimethyl sulfide. International Journal of Chemical Kinetics, 1987, 19, 1073-1082.	1.6	18
288	The S21 lines of the A2Σ+ ($v\hat{a} \in ^2 = 1$)â† \times 2Î ($v\hat{a} \in ^3 = 0$) transitions of OH and OD. Journal of Quantitative Spectroscopy and Radiative Transfer, 1987, 38, 163-166.	2.3	5

#	Article	IF	CITATIONS
289	The C2N2a3Σ+u â†' X1Σ+g chemiluminescence in matrices. Journal of Molecular Structure, 1987, 157, 155-165.	3.6	9
290	Rate constant of OH + OCS reaction over the temperature range 255-483 K. International Journal of Chemical Kinetics, 1986, 18, 1303-1314.	1.6	22
291	Chemiluminescence of CaCl From the Ca+Cl2Reaction in Argon Matrix. Journal of the Chinese Chemical Society, 1985, 32, 215-220.	1.4	1
292	Temperature dependence of the rate constant for the reaction OH \pm H2S in He, N2, and O2. International Journal of Chemical Kinetics, 1985, 17, 1201-1214.	1.6	28
293	Chemiluminescence of CaO from the Ca+N2O and Ca+O3 reactions in solid argon. Journal of Chemical Physics, 1985, 82, 2942-2946.	3.0	12
294	Temperature dependence of the rate constant and the branching ratio for the reaction Cl+HO2. Journal of Chemical Physics, 1982, 77, 756-763.	3.0	43
295	The chemiluminescent reactions Ba+N2O and Ba+O3 in solid argon. Journal of Chemical Physics, 1982, 77, 226-233.	3.0	17
296	Laser magnetic resonance spectroscopy of ClO and kinetic studies of the reactions of ClO with NO and NO2. International Journal of Chemical Kinetics, 1982, 14, 711-732.	1.6	26
297	Formic acid chemiluminescence from cryogenic reaction between triplet methylene and oxygen. Journal of Chemical Physics, 1981, 74, 4851-4857.	3.0	24
298	Chemiluminescence of ethylene in an inert matrix and the probable infrared spectrum of methylene. Journal of Chemical Physics, 1981, 75, 4241-4246.	3.0	26
299	Sulfur oxide: Lowâ€lying bound molecular electronic states of SO. Journal of Chemical Physics, 1979, 71, 3761-3769.	3.0	48
300	Chemiluminescence of S2 in solid argon. Journal of Chemical Physics, 1979, 70, 692.	3.0	23
301	Diatomic sulfur: Low lying bound molecular electronic states of S2. Journal of Chemical Physics, 1979, 70, 947.	3.0	76

302 Chemiluminescence of SO (? 1Σ â^'→ ? 1Δ) in solid argon. Journal of Chemical Physics, 1978, 6%,6063-3068.