List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6786412/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Modeling carbohydrates oxidation by oxygen catalyzed by bienzyme glucose dehydrogenase/laccase<br>system immobilized into microreactor with carbon nanotubes. Journal of Mathematical Chemistry,<br>2021, 59, 168-185. | 0.7 | 2         |
| 2  | Biosensors Acting in Injection Mode. Springer Series on Chemical Sensors and Biosensors, 2021, ,<br>183-205.                                                                                                           | 0.5 | 0         |
| 3  | Biosensors Based on Microreactors. Springer Series on Chemical Sensors and Biosensors, 2021, , 303-344.                                                                                                                | 0.5 | 0         |
| 4  | Biosensors Utilizing Consecutive and Parallel Substrates Conversion. Springer Series on Chemical Sensors and Biosensors, 2021, , 85-120.                                                                               | 0.5 | 0         |
| 5  | Biosensors Utilizing Synergistic Substrates Conversion. Springer Series on Chemical Sensors and Biosensors, 2021, , 155-181.                                                                                           | 0.5 | 0         |
| 6  | Modeling Carbon Nanotube Based Biosensors. Springer Series on Chemical Sensors and Biosensors, 2021, , 345-376.                                                                                                        | 0.5 | 0         |
| 7  | Chemically Modified Enzyme and Biomimetic Catalysts Electrodes. Springer Series on Chemical Sensors and Biosensors, 2021, , 207-242.                                                                                   | 0.5 | 0         |
| 8  | Biosensors Response Amplification with Cyclic Substrates Conversion. Springer Series on Chemical Sensors and Biosensors, 2021, , 121-154.                                                                              | 0.5 | 0         |
| 9  | Modeling Biosensors Utilizing Microbial Cells. Springer Series on Chemical Sensors and Biosensors, 2021, , 377-403.                                                                                                    | 0.5 | 0         |
| 10 | Introduction to Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, 2021, ,<br>1-47.                                                                                                           | 0.5 | 0         |
| 11 | Application of Mathematical Modeling to Optimal Design of Biosensors. Springer Series on Chemical Sensors and Biosensors, 2021, , 405-445.                                                                             | 0.5 | 0         |
| 12 | Biosensors Utilizing Non-Michaelis–Menten Kinetics. Springer Series on Chemical Sensors and<br>Biosensors, 2021, , 275-301.                                                                                            | 0.5 | 0         |
| 13 | COMPUTATIONAL MODELING OF SELF-ORGANIZATION OF BACTERIAL POPULATION CONSISTING OF SUBPOPULATIONS OF ACTIVE AND PASSIVE CELLS. Journal of Biological Systems, 2019, 27, 365-381.                                        | 0.5 | 1         |
| 14 | Computational modeling of batch stirred tank reactor based on spherical catalyst particles. Journal of Mathematical Chemistry, 2019, 57, 327-342.                                                                      | 0.7 | 7         |
| 15 | Numerical Analysis of the Dynamics of Reactant Conversion in Batch Stirred Tank Reactor. , 2018, , .                                                                                                                   |     | 0         |
| 16 | Asynchronous Client-Side Coordination of Cluster Service Sessions. Communications in Computer and Information Science, 2018, , 121-133.                                                                                | 0.4 | 0         |
| 17 | Phoretic interactions and oscillations in active suspensions of growing Escherichia coli. Royal<br>Society Open Science, 2018, 5, 180008.                                                                              | 1.1 | 4         |
| 18 | Modelling the enzyme catalysed substrate conversion in a microbioreactor acting in continuous flow mode. Nonlinear Analysis: Modelling and Control. 2018. 23. 437-458.                                                 | 1.1 | 12        |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nonlinear effects of diffusion limitations on the response and sensitivity of amperometric biosensors. Electrochimica Acta, 2017, 240, 399-407.                               | 2.6 | 20        |
| 20 | Application Of Two Phase Multi-Objective Optimization To Design Of Biosensors Utilizing Cyclic Substrate Conversion. , 2017, , .                                              |     | 2         |
| 21 | Optimal design of amperometric biosensors applying multi-objective optimization and decision visualization. Electrochimica Acta, 2016, 211, 586-594.                          | 2.6 | 16        |
| 22 | Microtiter plate tests for segregation of bioluminescent bacteria. Luminescence, 2016, 31, 127-134.                                                                           | 1.5 | 4         |
| 23 | Computational modelling of three-layered biosensor based on chemically modified electrode.<br>Computational and Applied Mathematics, 2016, 35, 405-421.                       | 1.3 | 8         |
| 24 | Numerical modelling of the normal adhesive elastic–plastic interaction of a bacterium. Advanced<br>Powder Technology, 2015, 26, 742-752.                                      | 2.0 | 14        |
| 25 | Numerical Modeling of Bacterium-surface Interaction by Applying DEM. Procedia Engineering, 2015, 102, 1408-1414.                                                              | 1.2 | 5         |
| 26 | Modelling of the normal elastic dissipative interaction of a S. Aureus Bacterium. AIP Conference<br>Proceedings, 2015, , .                                                    | 0.3 | 1         |
| 27 | Computational modeling of the bacterial self-organization in a rounded container: the effect of dimensionality. Nonlinear Analysis: Modelling and Control, 2015, 20, 603-620. | 1.1 | 3         |
| 28 | Effect of Diffusion Limitations on Multianalyte Determination from Biased Biosensor Response.<br>Sensors, 2014, 14, 4634-4656.                                                | 2.1 | 14        |
| 29 | Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor.<br>Sensors, 2014, 14, 2578-2594.                                                 | 2.1 | 4         |
| 30 | Modelling glucose dehydrogenase-based amperometric biosensor utilizing synergistic substrates conversion. Electrochimica Acta, 2014, 146, 752-758.                            | 2.6 | 12        |
| 31 | Modeling and Simulation of Biosensors. , 2014, , 1304-1309.                                                                                                                   |     | 1         |
| 32 | Optimization of the multianalyte determination with biased biosensor response. Chemometrics and<br>Intelligent Laboratory Systems, 2013, 126, 108-116.                        | 1.8 | 11        |
| 33 | A multi-cellular network of metabolically active E. coli as a weak gel of living Janus particles. Soft<br>Matter, 2013, 9, 4489.                                              | 1.2 | 9         |
| 34 | Electrochemical Peroxidaseâ€Catalase Clarkâ€Type Biosensor: Computed and Experimental Response.<br>Electroanalysis, 2013, 25, 1491-1496.                                      | 1.5 | 4         |
| 35 | Computational Modeling of Bienzyme Biosensor with Different Initial and Boundary Conditions.<br>Informatica, 2013, 24, 505-521.                                               | 1.5 | 7         |
| 36 | Modelling Carbon Nanotubes-Based Mediatorless Biosensor. Sensors, 2012, 12, 9146-9160.                                                                                        | 2.1 | 10        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Modelling of Amperometric Biosensor Used for Synergistic Substrates Determination. Sensors, 2012, 12, 4897-4917.                                                                              | 2.1 | 7         |
| 38 | Modelling the biosensor utilising parallel substrates conversion. Journal of Electroanalytical Chemistry, 2012, 685, 63-71.                                                                   | 1.9 | 14        |
| 39 | One-Dimensional Modelling Of A Carbon Nanotube-Based Biosensor. , 2012, , .                                                                                                                   |     | 0         |
| 40 | Modelling carbon nanotube based biosensor. Journal of Mathematical Chemistry, 2011, 49, 995-1010.                                                                                             | 0.7 | 13        |
| 41 | Mechanisms controlling the sensitivity of amperometric biosensors in flow injection analysis systems. Journal of Mathematical Chemistry, 2011, 49, 1521-1534.                                 | 0.7 | 9         |
| 42 | Modelling synergistic action of laccase-based biosensor utilizing simultaneous substrates conversion. Journal of Mathematical Chemistry, 2011, 49, 1573-1586.                                 | 0.7 | 5         |
| 43 | Metabolic selfâ€organization of bioluminescent <i>Escherichia coli</i> . Luminescence, 2011, 26, 716-721.                                                                                     | 1.5 | 8         |
| 44 | Modeling the bacterial self-organization in a circular container along the contact line as detected by bioluminescence imaging. Nonlinear Analysis: Modelling and Control, 2011, 16, 270-282. | 1.1 | 8         |
| 45 | Computational modelling of amperometric biosensors in the case of substrate and product inhibition.<br>Journal of Mathematical Chemistry, 2010, 47, 430-445.                                  | 0.7 | 8         |
| 46 | Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, 2010, , .                                                                                            | 0.5 | 53        |
| 47 | One-Layer Multi-Enzyme Models of Biosensors. Springer Series on Chemical Sensors and Biosensors, 2010, , 113-137.                                                                             | 0.5 | 1         |
| 48 | The Difference Schemes for the Diffusion Equation. Springer Series on Chemical Sensors and Biosensors, 2010, , 249-291.                                                                       | 0.5 | 0         |
| 49 | Modeling Biosensors at Steady State and Internal Diffusion Limitations. Springer Series on Chemical Sensors and Biosensors, 2010, , 9-20.                                                     | O.5 | 0         |
| 50 | Mono-Layer Mono-Enzyme Models of Biosensors. Springer Series on Chemical Sensors and Biosensors, 2010, , 43-111.                                                                              | 0.5 | 0         |
| 51 | Modeling Biosensors Utilizing Microbial Cells. Springer Series on Chemical Sensors and Biosensors, 2010, , 27-31.                                                                             | 0.5 | 0         |
| 52 | Multi-Layer Models of Biosensors. Springer Series on Chemical Sensors and Biosensors, 2010, , 139-202.                                                                                        | 0.5 | 0         |
| 53 | Biosensor Action. Springer Series on Chemical Sensors and Biosensors, 2010, , 3-8.                                                                                                            | O.5 | 1         |
| 54 | Modeling Biosensors of Complex Geometry. Springer Series on Chemical Sensors and Biosensors, 2010, , 203-246.                                                                                 | 0.5 | 0         |

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Further Comparisons of Finite Difference Schemes for Computational Modelling of Biosensors.<br>Nonlinear Analysis: Modelling and Control, 2009, 14, 419-433.           | 1.1 | 33        |
| 56 | Numerical simulation of a plate-gap biosensor with an outer porous membrane. Simulation Modelling<br>Practice and Theory, 2008, 16, 962-970.                           | 2.2 | 9         |
| 57 | Modelling Amperometric Biosensors Based on Chemically Modified Electrodes. Sensors, 2008, 8, 4800-4820.                                                                | 2.1 | 24        |
| 58 | Modelling a Peroxidase-based Optical Biosensor. Sensors, 2007, 7, 2723-2740.                                                                                           | 2.1 | 7         |
| 59 | Computational Modelling of Amperometric Enzyme Electrodes with Selective and Perforated Membranes. AIP Conference Proceedings, 2007, , .                               | 0.3 | 2         |
| 60 | Modelling of Amperometric Biosensors in the Case of Substrate Inhibition. Sensors, 2006, 6, 1513-1522.                                                                 | 2.1 | 29        |
| 61 | Mathematical Modeling of Plateâ^'gap Biosensors with an Outer Porous Membrane. Sensors, 2006, 6, 727-745.                                                              | 2.1 | 20        |
| 62 | Mathematical Modeling of Biosensors Based on an Array of Enzyme Microreactors. Sensors, 2006, 6,<br>453-465.                                                           | 2.1 | 16        |
| 63 | Computational Modelling of Biosensors with Perforated and Selective Membranes. Journal of Mathematical Chemistry, 2006, 39, 345-362.                                   | 0.7 | 28        |
| 64 | Mathematical Model of the Biosensors Acting in a Trigger Mode. Sensors, 2004, 4, 20-36.                                                                                | 2.1 | 15        |
| 65 | The Effect of Diffusion Limitations on the Response of Amperometric Biosensors with Substrate Cyclic Conversion. Journal of Mathematical Chemistry, 2004, 35, 199-213. | 0.7 | 24        |
| 66 | An Analysis of Mixtures Using Amperometric Biosensors and Artificial Neural Networks. Journal of<br>Mathematical Chemistry, 2004, 36, 281-297.                         | 0.7 | 16        |
| 67 | Reducing spatial dimensionality in a model of moisture diffusion in a solid material. International<br>Journal of Heat and Mass Transfer, 2004, 47, 699-705.           | 2.5 | 5         |
| 68 | Modelling amperometric enzyme electrode with substrate cyclic conversion. Biosensors and Bioelectronics, 2004, 19, 915-922.                                            | 5.3 | 43        |
| 69 | Numerical Investigation of the Geometrical Factor for Simulating the Drying of Wood. , 2004, , 95-100.                                                                 |     | 0         |
| 70 | Modelling of Amperometric Biosensors with Rough Surface of the Enzyme Membrane. Journal of Mathematical Chemistry, 2003, 34, 227-242.                                  | 0.7 | 39        |
| 71 | The Influence of the Enzyme Membrane Thickness on the Response of Amperometric Biosensors.<br>Sensors, 2003, 3, 248-262.                                               | 2.1 | 74        |
| 72 | Modelling Dynamics of Amperometric Biosensors in Batch and Flow Injection Analysis. Journal of<br>Mathematical Chemistry, 2002, 32, 225-237.                           | 0.7 | 28        |

| #  | Article                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Modelling a biosensor based on the heterogeneous microreactor. Journal of Mathematical Chemistry, 1999, 25, 245-252. | 0.7 | 18        |