Yujie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6786300/publications.pdf

Version: 2024-02-01

304602 360920 1,332 41 22 35 citations h-index g-index papers 41 41 41 1722 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. Journal of Hazardous Materials, 2020, 400, 123289.	6.5	176
2	Identification of Benzo [<i>a</i>]pyrene-Metabolizing Bacteria in Forest Soils by Using DNA-Based Stable-Isotope Probing. Applied and Environmental Microbiology, 2015, 81, 7368-7376.	1.4	89
3	An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration. Journal of Environmental Sciences, 2015, 35, 43-54.	3.2	76
4	Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge with ultrasound and Fenton processes: Effect of system parameters and synergistic effect study. Journal of Hazardous Materials, 2016, 307, 7-16.	6.5	62
5	Thermogravimetric characteristics of textile dyeing sludge, coal and their blend in N2/O2 and CO2/O2 atmospheres. Applied Thermal Engineering, 2017, 111, 87-94.	3.0	55
6	The influence of e-waste recycling on the molecular ecological network of soil microbial communities in Pakistan and China. Environmental Pollution, 2017, 231, 173-181.	3.7	50
7	An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Talanta, 2019, 195, 33-39.	2.9	49
8	Decolorization and biodegradation of the Congo red by Acinetobacter baumannii YNWH 226 and its polymer production's flocculation and dewatering potential. Bioresource Technology, 2015, 194, 233-239.	4.8	48
9	Novel bacteria capable of degrading phenanthrene in activated sludge revealed by stable-isotope probing coupled with high-throughput sequencing. Biodegradation, 2017, 28, 423-436.	1.5	47
10	Degradation of aromatic amines in textile-dyeing sludge by combining the ultrasound technique with potassium permanganate treatment. Journal of Hazardous Materials, 2016, 314, 1-10.	6.5	44
11	Could Uptake and Acropetal Translocation of PBDEs by Corn Be Enhanced Following Cu Exposure? Evidence from a Root Damage Experiment. Environmental Science & Evidence & 2016, 50, 856-863.	4.6	44
12	Contamination profiles and potential health risks of organophosphate flame retardants in PM2.5 from Guangzhou and Taiyuan, China. Environment International, 2020, 134, 105343.	4.8	43
13	The complex interactions between novel DEHP-metabolising bacteria and the microbes in agricultural soils. Science of the Total Environment, 2019, 660, 733-740.	3.9	34
14	Spatial and temporal distribution characteristics and ozone formation potentials of volatile organic compounds from three typical functional areas in China. Environmental Research, 2020, 183, 109141.	3.7	34
15	Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems. Chemosphere, 2018, 196, 377-385.	4.2	31
16	Enhanced oxytetracycline removal coupling with increased power generation using a self-sustained photo-bioelectrochemical fuel cell. Chemosphere, 2019, 221, 21-29.	4.2	31
17	Effect of particle water on ozone and secondary organic aerosol formation from benzene-NO2-NaCl irradiations. Atmospheric Environment, 2016, 140, 386-394.	1.9	30
18	Co-precipitation of Cu and Zn in precipitation of struvite. Science of the Total Environment, 2021, 764, 144269.	3.9	28

#	Article	IF	CITATIONS
19	Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment. Journal of Environmental Management, 2015, 161, 181-187.	3.8	27
20	Production of polyhydroxyalkanoates (PHA) using sludge from different wastewater treatment processes and the potential for medical and pharmaceutical applications. Environmental Technology (United Kingdom), 2017, 38, 1779-1791.	1.2	26
21	Effect of ultrasound on ionic liquid-hydrochloric acid pretreatment with rice straw. Biomass Conversion and Biorefinery, 2021, 11, 1749-1757.	2.9	26
22	Decolorization and biodegradation of the azo dye Congo red by an isolated Acinetobacter baumannii YNWH 226. Biotechnology and Bioprocess Engineering, 2014, 19, 687-695.	1.4	25
23	Autochthonous bioaugmentation with non-direct degraders: A new strategy to enhance wastewater bioremediation performance. Environment International, 2020, 136, 105473.	4.8	23
24	Reflection of Stereoselectivity during the Uptake and Acropetal Translocation of Chiral PCBs in Plants in the Presence of Copper. Environmental Science & Environmental Scienc	4.6	22
25	Long-term effect of carbon nanotubes on electrochemical properties and microbial community of electrochemically active biofilms in microbial fuel cells. International Journal of Hydrogen Energy, 2018, 43, 16240-16247.	3.8	19
26	Facile Synthesis of Porous ZnO Nanoparticles Efficient for Photocatalytic Degradation of Biomass-Derived Bisphenol A Under Simulated Sunlight Irradiation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 616780.	2.0	19
27	Inhibitory effect of cadmium(II) ion on anodic electrochemically active biofilms performance in bioelectrochemical systems. Chemosphere, 2018, 211, 202-209.	4.2	18
28	Role of liquid water in the formation of O3 and SOA particles from 1,2,3-trimethylbenzene. Atmospheric Environment, 2019, 217, 116955.	1.9	17
29	Simultaneous enhanced removal of Cu, PCBs, and PBDEs by corn from e-waste-contaminated soil using the biodegradable chelant EDDS. Environmental Science and Pollution Research, 2015, 22, 18203-18210.	2.7	15
30	Co-transport and competitive retention of different ionic rare earth elements (REEs) in quartz sand: Effect of kaolinite. Science of the Total Environment, 2020, 722, 137779.	3.9	15
31	Organophosphate flame retardants, tetrabromobisphenol A, and their transformation products in sediment of e-waste dismantling areas and the flame-retardant production base. Ecotoxicology and Environmental Safety, 2021, 225, 112717.	2.9	15
32	Effect of K2FeO4/US treatment on textile dyeing sludge disintegration and dewaterability. Journal of Environmental Management, 2015, 162, 81-86.	3.8	14
33	Characterisation and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soils and plants around e-waste dismantling sites in southern China. Environmental Science and Pollution Research, 2017, 24, 22173-22182.	2.7	13
34	Enhanced bioelectricity generation and azo dye treatment in a reversible photo-bioelectrochemical cell by using novel anthraquinone-2,6-disulfonate (AQDS)/MnO x -doped polypyrrole film electrodes. Bioresource Technology, 2017, 225, 40-47.	4.8	12
35	Analysis of the Metabolites of Indole Degraded by an Isolated (i) Acinetobacter pittii (i) L1. BioMed Research International, 2017, 2017, 1-10.	0.9	11
36	Reactor characterization and primary application of a state of art dual-reactor chamber in the investigation of atmospheric photochemical processes. Journal of Environmental Sciences, 2020, 98, 161-168.	3.2	11

YUJIE WANG

#	Article	IF	CITATIONS
37	Distribution and Chiral Signatures of Polychlorinated Biphenyls (PCBs) in Soils and Vegetables around an e-Waste Recycling Site. Journal of Agricultural and Food Chemistry, 2020, 68, 10542-10549.	2.4	10
38	In vitro hemocompatibility evaluation of poly (4-hydroxybutyrate) scaffold. International Journal of Clinical and Experimental Medicine, 2014, 7, 1233-43.	1.3	8
39	Chronic Exposure to Climbazole Induces Oxidative Stress and Sex Hormone Imbalance in the Testes of Male Zebrafish. Chemical Research in Toxicology, 2021, 34, 2558-2566.	1.7	7
40	Conversion of rice husk into fermentable sugar and silica using acid-catalyzed ionic liquid pretreatment. Environmental Science and Pollution Research, 2021, 28, 40715-40723.	2.7	5
41	Enhancement and analysis of Anthracene degradation by Tween 80 in LMS-HOBt. Scientific Reports, 2021, 11, 13121.	1.6	3