
Steve K Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6786059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Patterns and Processes of Microbial Community Assembly. Microbiology and Molecular Biology Reviews, 2013, 77, 342-356.	6.6	1,325
2	A temporal approach to linking aboveground and belowground ecology. Trends in Ecology and Evolution, 2005, 20, 634-641.	8.7	706
3	Seasonal Dynamics of Previously Unknown Fungal Lineages in Tundra Soils. Science, 2003, 301, 1359-1361.	12.6	586
4	Winter forest soil respiration controlled by climate and microbial community composition. Nature, 2006, 439, 711-714.	27.8	468
5	Phosphorus Limitation of Microbial Processes in Moist Tropical Forests: Evidence from Short-term Laboratory Incubations and Field Studies. Ecosystems, 2002, 5, 0680-0691.	3.4	385
6	Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry, 2007, 82, 229-240.	3.5	378
7	Global patterns in the biogeography of bacterial taxa. Environmental Microbiology, 2011, 13, 135-144.	3.8	362
8	Microbial Community Succession in an Unvegetated, Recently Deglaciated Soil. Microbial Ecology, 2007, 53, 110-122.	2.8	359
9	Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME Journal, 2013, 7, 1102-1111.	9.8	354
10	Seasonal Changes in an Alpine Soil Bacterial Community in the Colorado Rocky Mountains. Applied and Environmental Microbiology, 2004, 70, 2867-2879.	3.1	318
11	Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry, 1998, 43, 1-15.	3.5	312
12	LINKS BETWEEN MICROBIAL POPULATION DYNAMICS AND NITROGEN AVAILABILITY IN AN ALPINE ECOSYSTEM. Ecology, 1999, 80, 1623-1631.	3.2	310
13	BIOGEOCHEMICAL CONSEQUENCES OF RAPID MICROBIAL TURNOVER AND SEASONAL SUCCESSION IN SOIL. Ecology, 2007, 88, 1379-1385.	3.2	297
14	Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry, 1996, 32, 93.	3.5	283
15	Changes in Soil Microbial Community Structure and Function in an Alpine Dry Meadow Following Spring Snow Melt. Microbial Ecology, 2002, 43, 307-314.	2.8	269
16	Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes. Oecologia, 1997, 110, 403-413.	2.0	253
17	The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environmental Microbiology, 2008, 10, 3093-3105.	3.8	252
18	TOPOGRAPHIC PATTERNS OF ABOVE- AND BELOWGROUND PRODUCTION AND NITROGEN CYCLING IN ALPINE TUNDRA. Ecology, 1998, 79, 2253-2266.	3.2	229

#	Article	IF	CITATIONS
19	Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biology and Biochemistry, 2000, 32, 441-448.	8.8	227
20	The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2793-2802.	2.6	222
21	The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia, 2007, 154, 327-338.	2.0	209
22	Links between Microbial Population Dynamics and Nitrogen Availability in an Alpine Ecosystem. Ecology, 1999, 80, 1623.	3.2	205
23	Microbial growth under the snow: Implications for nutrient and allelochemical availability in temperate soils. Plant and Soil, 2004, 259, 1-7.	3.7	202
24	Models for the kinetics of biodegradation of organic compounds not supporting growth. Applied and Environmental Microbiology, 1985, 50, 323-331.	3.1	198
25	SEASONAL PARTITIONING OF NITROGEN BY PLANTS AND SOIL MICROORGANISMS IN AN ALPINE ECOSYSTEM. Ecology, 1999, 80, 1883-1891.	3.2	191
26	Evidence that chytrids dominate fungal communities in high-elevation soils. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18315-18320.	7.1	171
27	Do bacterial and fungal communities assemble differently during primary succession?. Molecular Ecology, 2014, 23, 254-258.	3.9	154
28	Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Applied and Environmental Microbiology, 1992, 58, 2879-2885.	3.1	148
29	Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environmental Microbiology, 2006, 8, 1471-1486.	3.8	147
30	Decreases in average bacterial community rRNA operon copy number during succession. ISME Journal, 2016, 10, 1147-1156.	9.8	146
31	Biogeography and habitat modelling of high-alpine bacteria. Nature Communications, 2010, 1, 53.	12.8	141
32	Effects of dissolved organic carbon and second substrates on the biodegradation of organic compounds at low concentrations. Applied and Environmental Microbiology, 1985, 49, 822-827.	3.1	141
33	Fumarole-Supported Islands of Biodiversity within a Hyperarid, High-Elevation Landscape on Socompa Volcano, Puna de Atacama, Andes. Applied and Environmental Microbiology, 2009, 75, 735-747.	3.1	133
34	Global Distribution of Polaromonas Phylotypes - Evidence for a Highly Successful Dispersal Capacity. PLoS ONE, 2011, 6, e23742.	2.5	125
35	Variation in competitive abilities of plants and microbes for specific amino acids. Biology and Fertility of Soils, 1999, 29, 257-261.	4.3	124
36	Integron Diversity in Heavy-Metal-Contaminated Mine Tailings and Inferences about Integron Evolution. Applied and Environmental Microbiology, 2004, 70, 1160-1168.	3.1	123

#	Article	IF	CITATIONS
37	The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Biogeochemistry, 2009, 95, 23-35.	3.5	115
38	Gene Flow among Conspecific Populations of Baetis sp. (Ephemeroptera): Adult Flight and Larval Drift. Journal of the North American Benthological Society, 1995, 14, 147-157.	3.1	113
39	Mycorrhizal infection, phosphorus uptake, and phenology in Ranunculus adoneus: implications for the functioning of mycorrhizae in alpine systems. Oecologia, 1993, 94, 229-234.	2.0	112
40	Nitrogen Mineralization and Microbial Biomass Nitrogen Dynamics in Three Alpine Tundra Communities. Soil Science Society of America Journal, 1995, 59, 1036-1043.	2.2	111
41	Structure and function of alpine and arctic soil microbial communities. Research in Microbiology, 2005, 156, 775-784.	2.1	110
42	Kinetics of p-nitrophenol mineralization by a Pseudomonas sp.: effects of second substrates. Applied and Environmental Microbiology, 1987, 53, 2617-2623.	3.1	107
43	Nutrient Addition Dramatically Accelerates Microbial Community Succession. PLoS ONE, 2014, 9, e102609.	2.5	106
44	Fire severity shapes plant colonization effects on bacterial community structure, microbial biomass, and soil enzyme activity in secondary succession of a burned forest. Soil Biology and Biochemistry, 2015, 90, 161-168.	8.8	97
45	Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Molecular Phylogenetics and Evolution, 2008, 46, 635-644.	2.7	95
46	Mycorrhizal and Dark-Septate Fungi in Plant Roots Above 4270 Meters Elevation in the Andes and Rocky Mountains. Arctic, Antarctic, and Alpine Research, 2008, 40, 576-583.	1.1	93
47	Soil rotifer communities are extremely diverse globally but spatially autocorrelated locally. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4406-4410.	7.1	90
48	Molecular and Metabolic Characterization of Cold-Tolerant Alpine Soil Pseudomonas Sensu Stricto. Applied and Environmental Microbiology, 2004, 70, 483-489.	3.1	87
49	Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat. Science Advances, 2018, 4, eaaq0942.	10.3	86
50	Soil CO ₂ flux and photoautotrophic community composition in highâ€elevation, â€~barren' soil. Environmental Microbiology, 2009, 11, 674-686.	3.8	83
51	Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology, 2018, 99, 1942-1952.	3.2	83
52	Degradation of juglone by soil bacteria. Journal of Chemical Ecology, 1988, 14, 1561-1571.	1.8	81
53	Microbial population dynamics in an extreme environment: controlling factors in talus soils at 3750 m in the Colorado Rocky Mountains. Biogeochemistry, 2004, 68, 297-311.	3.5	81
54	Supplemental Substrate Enhancement of 2,4-Dinitrophenol Mineralization by a Bacterial Consortium. Applied and Environmental Microbiology, 1990, 56, 1551-1558.	3.1	81

#	Article	IF	CITATIONS
55	Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains. Biogeosciences, 2012, 9, 3337-3355.	3.3	76
56	Microbial responses to nitrogen additions in alpine tundra soil. Soil Biology and Biochemistry, 1996, 28, 751-755.	8.8	75
57	Microbial activity and diversity during extreme freeze–thaw cycles in periglacial soils, 5400Âm elevation, Cordillera Vilcanota, Perú. Extremophiles, 2009, 13, 807-816.	2.3	71
58	Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition. Journal of Microbiology, 2009, 47, 673-681.	2.8	70
59	Fungal communities at the edge: Ecological lessons from high alpine fungi. Fungal Ecology, 2012, 5, 443-452.	1.6	70
60	Nitrogen Uptake during Snowmelt by the Snow Buttercup, Ranunculus adoneus. Arctic and Alpine Research, 1998, 30, 121.	1.3	67
61	An empirical model of amino acid transformations in an alpine soil. Soil Biology and Biochemistry, 2001, 33, 189-198.	8.8	67
62	The potential for microbial life in the highestâ€elevation (>6000Âm.a.s.l.) mineral soils of the Atacama region. Journal of Geophysical Research, 2012, 117, .	3.3	67
63	Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 702-708.	2.6	66
64	Diversity patterns of microbial eukaryotes mirror those of bacteria in Antarctic cryoconite holes. FEMS Microbiology Ecology, 2018, 94, .	2.7	65
65	SOIL MICROBIAL DYNAMICS AND BIOGEOCHEMISTRY IN TROPICAL FORESTS AND PASTURES, SOUTHWESTERN COSTA RICA. , 2003, 13, 314-326.		64
66	Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria. Frontiers in Microbiology, 2014, 5, 698.	3.5	62
67	Predicting threshold concentrations of organic substrates for bacterial growth. Journal of Theoretical Biology, 1985, 114, 1-8.	1.7	58
68	Soil Microbial Dynamics in Costa Rica: Seasonal and Biogeochemical Constraints. Biotropica, 2004, 36, 184-195.	1.6	58
69	Nutrient limitation of soil microbial activity during the earliest stages of ecosystem development. Oecologia, 2017, 185, 513-524.	2.0	58
70	Fluxes of nitrous oxide and methane from nitrogen-amended soils in a Colorado alpine ecosystem. Biogeochemistry, 1994, 27, 23.	3.5	57
71	Interspecific Plant Interactions Reflected in Soil Bacterial Community Structure and Nitrogen Cycling in Primary Succession. Frontiers in Microbiology, 2018, 9, 128.	3.5	57
72	High levels of microbial biomass and activity in unvegetated tropical and temperate alpine soils. Soil Biology and Biochemistry, 2008, 40, 2605-2610.	8.8	56

#	Article	IF	CITATIONS
73	Patterns of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes across a mostly-unvegetated, high-elevation landscape. Fungal Ecology, 2018, 36, 63-74.	1.6	55
74	Exponential growth of "snow molds―at sub-zero temperatures: an explanation for high beneath-snow respiration rates and Q 10 values. Biogeochemistry, 2009, 95, 13-21.	3.5	54
75	Co-Occurrence Patterns of Plants and Soil Bacteria in the High-Alpine Subnival Zone Track Environmental Harshness. Frontiers in Microbiology, 2012, 3, 347.	3.5	54
76	Biogeography and Landscape-Scale Diversity of the Dominant Crenarchaeota of Soil. Microbial Ecology, 2006, 52, 480-490.	2.8	53
77	Nutrient limitation of microbial phototrophs on a debris-covered glacier. Soil Biology and Biochemistry, 2016, 95, 156-163.	8.8	53
78	Insights and inferences about integron evolution from genomic data. BMC Genomics, 2008, 9, 261.	2.8	51
79	Symbiotic N2-fixation in alpine tundra: ecosystem input and variation in fixation rates among communities. Oecologia, 1996, 108, 345-350.	2.0	50
80	Impacts of chronic nitrogen additions vary seasonally and by microbial functional group in tundra soils. Biogeochemistry, 2004, 69, 1-17.	3.5	49
81	Phylogeny and Ecophysiology of Opportunistic "Snow Molds―from a Subalpine Forest Ecosystem. Microbial Ecology, 2008, 56, 681-687.	2.8	47
82	Improved procedure for obtaining statistically valid parameter estimates from soil respiration data. Soil Biology and Biochemistry, 1995, 27, 1-7.	8.8	46
83	Estimating the biomass of microbial functional groups using rates of growth-related soil respiration. Soil Biology and Biochemistry, 1996, 28, 1569-1577.	8.8	45
84	Phylogeny and biogeography of an uncultured clade of snow chytrids. Environmental Microbiology, 2013, 15, 2672-2680.	3.8	45
85	Biogeochemical Stoichiometry Reveals P and N Limitation Across the Post-glacial Landscape of Denali National Park, Alaska. Ecosystems, 2016, 19, 1164-1177.	3.4	45
86	A <i>Naganishia</i> in high places: functioning populations or dormant cells from the atmosphere?. Mycology, 2017, 8, 153-163.	4.4	45
87	Soil ecological interactions: comparisons between tropical and subalpine forests. Oecologia, 2001, 128, 549-556.	2.0	44
88	Biogeochemical drivers of microbial community convergence across actively retreating glaciers. Soil Biology and Biochemistry, 2016, 101, 74-84.	8.8	42
89	Kinetics of biodegradation of mixtures of substrates in soil. Soil Biology and Biochemistry, 1989, 21, 703-708.	8.8	41
90	Landscape patterns of CH4 fluxes in an alpine tundra ecosystem. Biogeochemistry, 1999, 45, 243-264.	3.5	41

#	Article	IF	CITATIONS
91	Life at extreme elevations on Atacama volcanoes: the closest thing to Mars on Earth?. Antonie Van Leeuwenhoek, 2018, 111, 1389-1401.	1.7	41
92	Spatio-temporal dynamics of soil bacterial communities as a function of Amazon forest phenology. Scientific Reports, 2018, 8, 4382.	3.3	40
93	Methane flux in subalpine wetland and unsaturated soils in the southern Rocky Mountains. Global Biogeochemical Cycles, 1999, 13, 101-113.	4.9	39
94	Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire. Forests, 2017, 8, 347.	2.1	39
95	INTERSPECIFIC PLANT ASSOCIATION EFFECTS ON VESICULAR-ARBUSCULAR MYCORRHIZA OCCURRENCE IN ATRIPLEX CONFERTIFOLIA. New Phytologist, 1983, 95, 241-246.	7.3	38
96	Mycorrhizal Fungi on the Galapagos Islands. Biotropica, 1986, 18, 236.	1.6	38
97	THE RATE AND PATTERN OF CLADOGENESIS IN MICROBES. Evolution; International Journal of Organic Evolution, 2004, 58, 946-955.	2.3	38
98	Isolation and phylogenetic identification of a dark-septate fungus associated with the alpine plantRanunculus adoneus. New Phytologist, 2001, 150, 747-755.	7.3	37
99	Effect of glucose on 2,4-dinitrophenol degradation kinetics in sequencing batch reactors. Water Environment Research, 1993, 65, 73-81.	2.7	36
100	Use of a pentachlorophenol degrading bacterium to bioremediate highly contaminated soil. Applied Biochemistry and Biotechnology, 1995, 54, 271-275.	2.9	36
101	Ectomycorrhizal transfer of amino acid-nitrogen to the alpine sedgeKobresia myosuroides. New Phytologist, 1999, 142, 163-167.	7.3	36
102	Title is missing!. Journal of Chemical Ecology, 2000, 26, 2049-2057.	1.8	36
103	Can zoosporic true fungi grow or survive in extreme or stressful environments?. Extremophiles, 2010, 14, 417-425.	2.3	36
104	Phylogeny of ulotrichalean algae from extreme high-altitude and high-latitude ecosystems. Polar Biology, 2015, 38, 689-697.	1.2	36
105	Comparison of Microbial Communities in the Sediments and Water Columns of Frozen Cryoconite Holes in the McMurdo Dry Valleys, Antarctica. Frontiers in Microbiology, 2019, 10, 65.	3.5	36
106	A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. Journal of Zoology, 2021, 313, 18-36.	1.7	36
107	Fungal and bacterial responses to phenolic compounds and amino acids in high altitude barren soils. Soil Biology and Biochemistry, 2002, 34, 989-995.	8.8	35
108	Acetate stimulates atmospheric CH4 oxidation by an alpine tundra soil. Soil Biology and Biochemistry, 1999, 31, 1649-1655.	8.8	34

7

#	Article	IF	CITATIONS
109	Coexisting Bacterial Populations Responsible for Multiphasic Mineralization Kinetics in Soil. Applied and Environmental Microbiology, 1990, 56, 2692-2697.	3.1	33
110	Plant colonization of moss-dominated soils in the alpine: Microbial and biogeochemical implications. Soil Biology and Biochemistry, 2017, 111, 135-142.	8.8	32
111	Single-Stranded DNA Viruses in Antarctic Cryoconite Holes. Viruses, 2019, 11, 1022.	3.3	31
112	Dynamics of microbial populations in soil: Indigenous microorganisms degrading 2,4-dinitrophenol. Microbial Ecology, 1989, 18, 285-296.	2.8	29
113	Microbial Biomass Levels in Barren and Vegetated High Altitude Talus Soils. Soil Science Society of America Journal, 2001, 65, 111-117.	2.2	29
114	Quantitative methods for the analysis of zoosporic fungi. Journal of Microbiological Methods, 2012, 89, 22-32.	1.6	29
115	Island Biogeography of Cryoconite Hole Bacteria in Antarctica's Taylor Valley and Around the World. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	29
116	Cryoconite – From minerals and organic matter to bioengineered sediments on glacier's surfaces. Science of the Total Environment, 2022, 807, 150874.	8.0	29
117	Microbial Communities of High-Elevation Fumaroles, Penitentes, and Dry Tephra "Soils―of the Puna de Atacama Volcanic Zone. Microbial Ecology, 2018, 76, 340-351.	2.8	27
118	Estimating phosphorus availability for microbial growth in an emerging landscape. Geoderma, 2011, 163, 135-140.	5.1	26
119	Environmental DNA sequencing primers for eutardigrades and bdelloid rotifers. BMC Ecology, 2009, 9, 25.	3.0	25
120	Incorporating biotic factors in species distribution modeling: are interactions with soil microbes important?. Ecography, 2016, 39, 970-980.	4.5	25
121	Rapid temporal changes in root colonization by arbuscular mycorrhizal fungi and fine root endophytes, not dark septate endophytes, track plant activity and environment in an alpine ecosystem. Mycorrhiza, 2018, 28, 717-726.	2.8	24
122	Wetting stimulates atmospheric CH4 oxidation by alpine soil. FEMS Microbiology Ecology, 1998, 25, 349-353.	2.7	23
123	Ecological implications of the destruction of juglone (5-hydroxy-l,4-naphthoquinone) by soil bacteria. Journal of Chemical Ecology, 1990, 16, 3547-3549.	1.8	22
124	Landscape patterns of CH4 fluxes in an alpine tundra ecosystem. Biogeochemistry, 1999, 45, 243-264.	3.5	22
125	The disappearing periglacial ecosystem atop Mt. Kilimanjaro supports both cosmopolitan and endemic microbial communities. Scientific Reports, 2019, 9, 10676.	3.3	21
126	A phylogenetic model for the recruitment of species into microbial communities and application to studies of the human microbiome. ISME Journal, 2020, 14, 1359-1368.	9.8	21

#	Article	IF	CITATIONS
127	Effects of natural and experimental drought on soil fungi and biogeochemistry in an Amazon rain forest. Communications Earth & Environment, 2021, 2, .	6.8	21
128	A simple method for determining limiting nutrients for photosynthetic crusts. Plant Ecology and Diversity, 2012, 5, 513-519.	2.4	20
129	Spatial autocorrelation of microbial communities atop a debris-covered glacier is evidence of a supraglacial chronosequence. FEMS Microbiology Ecology, 2017, 93, .	2.7	19
130	Endogenous Methanogenesis Stimulates Oxidation of Atmospheric CH4 in Alpine Tundra Soil. Microbial Ecology, 2002, 43, 408-415.	2.8	18
131	Disruption of narH , narJ , and moaE Inhibits Heterotrophic Nitrification in Pseudomonas Strain M19. Applied and Environmental Microbiology, 2002, 68, 6462-6465.	3.1	17
132	Growth of high-elevation Cryptococcus sp. during extreme freeze–thaw cycles. Extremophiles, 2016, 20, 579-588.	2.3	17
133	Multiple, Compounding Disturbances in a Forest Ecosystem: Fire Increases Susceptibility of Soil Edaphic Properties, Bacterial Community Structure, and Function to Change with Extreme Precipitation Event. Soil Systems, 2019, 3, 40.	2.6	17
134	Nieves penitentes are a new habitat for snow algae in one of the most extreme high-elevation environments on Earth. Arctic, Antarctic, and Alpine Research, 2019, 51, 190-200.	1.1	16
135	A substrate-induced growth-response method for estimating the biomass of microbial functional groups in soil and aquatic systems. FEMS Microbiology Ecology, 1992, 10, 197-206.	2.7	15
136	Plant–microbe interactions at multiple scales across a high-elevation landscape. Plant Ecology and Diversity, 2015, 8, 703-712.	2.4	15
137	Of mammals and bacteria in a rainforest: Temporal dynamics of soil bacteria in response to simulated N pulse from mammalian urine. Functional Ecology, 2018, 32, 773-784.	3.6	15
138	Cyanobacteria in early soil development of deglaciated forefields: Dominance of non-heterocytous filamentous cyanobacteria and phosphorus limitation of N-fixing Nostocales. Soil Biology and Biochemistry, 2021, 154, 108127.	8.8	15
139	Multipleâ€ŧrophic patterns of primary succession following retreat of a highâ€elevation glacier. Ecosphere, 2021, 12, e03400.	2.2	15
140	Colonization of contaminated soil by an introduced bacterium: effects of initial pentachlorophenol levels on the survival of Sphingomonas chlorophenolica strain RA2. Journal of Industrial Microbiology and Biotechnology, 1999, 23, 326-331.	3.0	14
141	Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles. Journal of Microbiology, 2019, 57, 243-251.	2.8	14
142	Soil Microbial Networks Shift Across a High-Elevation Successional Gradient. Frontiers in Microbiology, 2019, 10, 2887.	3.5	14
143	A substrate-induced growth-response method for estimating the biomass of microbial functional groups in soil and aquatic systems. FEMS Microbiology Letters, 1992, 101, 197-206.	1.8	13
144	Experimental cryoconite holes as mesocosms for studying community ecology. Polar Biology, 2019, 42, 1973-1984.	1.2	13

#	Article	IF	CITATIONS
145	Growingâ€season length and soil microbes influence the performance of a generalist bunchgrass beyond its current range. Ecology, 2020, 101, e03095.	3.2	13
146	EFFECT OF THE NONâ€MYCORRHIZAL PIONEER PLANT SALSOLA KALI L. (CHENOPODIACEAE) ON VESICULARâ€ARBUSCULAR MYCORRHIZAL (VAM) FUNGI. American Journal of Botany, 1984, 71, 1035-1039.	1.7	12
147	Winter production of CO. Oecologia, 1997, 110, 403.	2.0	12
148	Growth of phenol-mineralizing microorganisms in fresh water. Applied and Environmental Microbiology, 1985, 49, 11-14.	3.1	12
149	Interactions of bacteria and microflagellates in sequencing batch reactors exhibiting enhanced mineralization of toxic organic chemicals. Microbial Ecology, 1992, 23, 127-142.	2.8	11
150	Nematode community diversity and function across an alpine landscape undergoing plant colonization of previously unvegetated soils. Soil Biology and Biochemistry, 2021, 161, 108380.	8.8	11
151	A simple method for quantifying activity and survival of microorganisms involved in bioremediation processes. Applied Biochemistry and Biotechnology, 1995, 54, 259-270.	2.9	10
152	Microbial biomass and activity in high elevation (>5100 meters) soils from the Annapurna and Sagarmatha regions of the Nepalese Himalayas. Himalayan Journal of Sciences, 2011, 6, 11-18.	0.3	10
153	Winter gas exchange between the atmosphere and snow-covered soils on Niwot Ridge, Colorado, USA. Plant Ecology and Diversity, 2015, 8, 677-688.	2.4	10
154	Litter-driven feedbacks influence plant colonization of a high elevation early successional ecosystem. Plant and Soil, 2019, 444, 71-85.	3.7	10
155	RECOVERY OF MICROBIALLY MEDIATED PROCESSES IN SOIL AUGMENTED WITH A PENTACHLOROPHENOL-MINERALIZING BACTERIUM. Environmental Toxicology and Chemistry, 2005, 24, 1912.	4.3	9
156	Alpine and Arctic Soil Microbial Communities. , 2013, , 43-55.		9
157	Structure of bacterial and eukaryote communities reflect in situ controls on community assembly in a high-alpine lake. Journal of Microbiology, 2019, 57, 852-864.	2.8	9
158	Evidence for phosphorus limitation in high-elevation unvegetated soils, Niwot Ridge, Colorado. Biogeochemistry, 2020, 147, 1-13.	3.5	9
159	Interference betweenSalsola kali L. seedlings: Implications for plant succession. Plant and Soil, 1989, 116, 107-110.	3.7	8
160	Maintenance energy model for microbial degradation of toxic chemicals in soil. Soil Biology and Biochemistry, 1996, 28, 907-915.	8.8	8
161	Seasonal Partitioning of Nitrogen by Plants and Soil Microorganisms in an Alpine Ecosystem. Ecology, 1999, 80, 1883.	3.2	8
162	Microbial Species–Area Relationships in Antarctic Cryoconite Holes Depend on Productivity. Microorganisms, 2020, 8, 1747.	3.6	8

#	Article	IF	CITATIONS
163	Evidence of a population of leaf-eared mice <i>Phyllotis vaccarum</i> above 6,000 m in the Andes and a survey of high-elevation mammals. Journal of Mammalogy, 2022, 103, 776-785.	1.3	8
164	Do plant–soil interactions influence how the microbial community responds to environmental change?. Ecology, 2022, 103, e03554.	3.2	7
165	Vicuña dung gardens at the edge of the cryosphere. Ecology, 2021, 102, e03228.	3.2	6
166	Gullies and Moraines Are Islands of Biodiversity in an Arid, Mountain Landscape, Asgard Range, Antarctica. Frontiers in Microbiology, 2021, 12, 654135.	3.5	6
167	THE RATE AND PATTERN OF CLADOGENESIS IN MICROBES. Evolution; International Journal of Organic Evolution, 2004, 58, 946.	2.3	5
168	Freeze–thaw revival of rotifers and algae in a desiccated, high-elevation (5500 meters) microbial mat, high Andes, Perú. Extremophiles, 2017, 21, 573-580.	2.3	5
169	Effect of the Non-Mycorrhizal Pioneer Plant Salsola kali L. (Chenopodiaceae) on Vesicular-Arbuscular Mycorrhizal (Vam) Fungi. American Journal of Botany, 1984, 71, 1035.	1.7	5
170	Microbial biogeochemistry and phosphorus limitation in cryoconite holes on glaciers across the Taylor Valley, McMurdo Dry Valleys, Antarctica. Biogeochemistry, 2022, 158, 313-326.	3.5	5
171	Maintenance energy model for microbial degradation of toxic chemicals in soil. Soil Biology and Biochemistry, 1996, 28, 1729-1737.	8.8	3
172	Soil Microbial Dynamics in Costa Rica: Seasonal and Biogeochemical Constraints1. Biotropica, 2004, 36, 184.	1.6	3
173	The Missing Fungi: New Insights from Culture-Independent Molecular Studies of Soil. , 0, , 55-66.		3
174	Invasive annual cheatgrass enhances the abundance of native microbial and microinvertebrate eukaryotes but reduces invasive earthworms. Plant and Soil, 2022, 473, 591-604.	3.7	3
175	Limited Response of Indigenous Microbes to Water and Nutrient Pulses in High-Elevation Atacama Soils: Implications for the Cold–Dry Limits of Life on Earth. Microorganisms, 2020, 8, 1061.	3.6	2
176	Do Growth Kinetics of Snow-mold Fungi Explain Exponential CO2 Fluxes Through the Snow?. , 2013, , 245-253.		2
177	The presence of a foreign microbial community promotes plant growth and reduces filtering of root fungi in the arctic-alpine plant <i>Silene acaulis</i> . Plant Ecology and Diversity, 2020, 13, 377-390.	2.4	2
178	Crossing Treeline: Bacterioplankton Communities of Alpine and Subalpine Rocky Mountain Lakes. Frontiers in Microbiology, 2021, 12, 533121.	3.5	2
179	Insights into an undescribed highâ€elevation lake (6,170 m a.s.l.) on Volcán Llullaillaco: A physical and microbiological view. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 2293-2299.	2.0	1
180	TOPOGRAPHIC PATTERNS OF ABOVE- AND BELOWGROUND PRODUCTION AND NITROGEN CYCLING IN ALPINE		1

TUNDRA. , 1998, 79, 2253.

#	Article	IF	CITATIONS
181	Nitrogen pulses increase fungal pathogens in Amazonian lowland tropical rain forests. Journal of Ecology, 2022, 110, 1775-1789.	4.0	1
182	Vicuña dung gardens at the edge of the cryosphere: Reply. Ecology, 2022, 103, e03579.	3.2	0
183	Of Microbes and Mummies: Tales of Microbial Activity and Inactivity at 6000 m a.s.l , 2020, , 97-112.		0