Richard L Smith Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6785850/publications.pdf Version: 2024-02-01

RICHARD | SMITH IR

#	Article	IF	CITATIONS
1	Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chemistry, 2008, 10, 799.	4.6	340
2	Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresource Technology, 2008, 99, 3424-3430.	4.8	333
3	Ultrasound-enhanced conversion of biomass to biofuels. Progress in Energy and Combustion Science, 2014, 41, 56-93.	15.8	319
4	Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chemistry, 2009, 11, 1327.	4.6	275
5	Replacement of CH4 in the hydrate by use of liquid CO2. Energy Conversion and Management, 2005, 46, 1680-1691.	4.4	271
6	Isothermal vapor-liquid equilibrium data for binary systems at high pressures: carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide-1-propanol, methane-ethanol, methane-1-propanol, ethane-ethanol, and ethane-1-propanol systems. Journal of Chemical & Engineering Data, 1990, 35, 63-66.	1.0	263
7	Chemical Reactions of C1 Compounds in Near-Critical and Supercritical Water. Chemical Reviews, 2004, 104, 5803-5822.	23.0	262
8	Principles of green chemistry: PRODUCTIVELY. Green Chemistry, 2005, 7, 761.	4.6	260
9	Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catalysis Communications, 2008, 9, 2244-2249.	1.6	245
10	Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in Energy and Combustion Science, 2016, 55, 98-194.	15.8	234
11	Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science, 2012, 38, 672-690.	15.8	226
12	The 24 Principles of Green Engineering and Green Chemistry: "IMPROVEMENTS PRODUCTIVELY― Green Chemistry, 2008, 10, 268.	4.6	205
13	Methane recovery from methane hydrate using pressurized CO2. Fluid Phase Equilibria, 2005, 228-229, 553-559.	1.4	196
14	Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Catalysis Communications, 2009, 10, 1771-1775.	1.6	171
15	Selective Conversion of <scp>D</scp> -Fructose to 5-Hydroxymethylfurfural by Ion-Exchange Resin in Acetone/Dimethyl sulfoxide Solvent Mixtures. Industrial & Engineering Chemistry Research, 2008, 47, 9234-9239.	1.8	166
16	Microstructural Evolution and Magnetic Properties of NiFe2O4Nanocrystals Dispersed in Amorphous Silica. Chemistry of Materials, 2000, 12, 3705-3714.	3.2	165
17	Thermal and chemical methods for producing zinc silicate (willemite): A review. Progress in Crystal Growth and Characterization of Materials, 2009, 55, 98-124.	1.8	161
18	Fast Transformation of Glucose and Di…Polysaccharides into 5â€Hydroxymethylfurfural by Microwave Heating in an Ionic Liquid/Catalyst System. ChemSusChem, 2010, 3, 1071-1077.	3.6	157

2

#	Article	IF	CITATIONS
19	Synthesis of Nanoscale Ce1-xFexO2Solid Solutions via a Low-Temperature Approach. Journal of the American Chemical Society, 2001, 123, 11091-11092.	6.6	152
20	Acid atalyzed Dehydration of Fructose into 5â€Hydroxymethylfurfural by Celluloseâ€Đerived Amorphous Carbon. ChemSusChem, 2012, 5, 2215-2220.	3.6	152
21	Reactions of d-fructose in water at temperatures up to 400°C and pressures up to 100MPa. Journal of Supercritical Fluids, 2007, 42, 110-119.	1.6	149
22	Black liquor-derived porous carbons from rice straw for high-performance supercapacitors. Chemical Engineering Journal, 2017, 316, 770-777.	6.6	148
23	High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles. Energy and Environmental Science, 2011, 4, 881.	15.6	138
24	High-Pressure Densities of 1-Alkyl-3-methylimidazolium Hexafluorophosphates and 1-Alkyl-3-methylimidazolium Tetrafluoroborates at Temperatures from (313 to 473) K and at Pressures up to 200 MPa. Journal of Chemical & Engineering Data, 2009, 54, 22-27.	1.0	134
25	Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system. Green Chemistry, 2013, 15, 2167.	4.6	133
26	Pressure–volume–temperature (PVT) measurements of ionic liquids ([bmim+][PF6â^'], [bmim+][BF4â^'],) Tj 2008, 264, 147-155.	ETQq0 0 1.4	0 rgBT /Overlc 131
27	Reaction kinetics of d-xylose in sub- and supercritical water. Journal of Supercritical Fluids, 2010, 55, 208-216.	1.6	129
28	Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid. Bioresource Technology, 2012, 116, 355-359.	4.8	126
29	Macro and microscopic CH ₄ –CO ₂ replacement in CH ₄ hydrate under pressurized CO ₂ . AICHE Journal, 2007, 53, 2715-2721.	1.8	123
30	Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate. Bioresource Technology, 2009, 100, 5237-5242.	4.8	123
31	Efficient Catalytic Conversion of Fructose into 5â€Hydroxymethylfurfural in Ionic Liquids at Room Temperature. ChemSusChem, 2009, 2, 944-946.	3.6	121
32	Heavy oil upgrading in the presence of high density water: Basic study. Journal of Supercritical Fluids, 2010, 53, 48-52.	1.6	119
33	Green chemical processes with supercritical fluids: Properties, materials, separations and energy. Journal of Supercritical Fluids, 2011, 60, 2-15.	1.6	110
34	Solubility, swelling degree and crystallinity of carbon dioxide–polypropylene system. Journal of Supercritical Fluids, 2007, 40, 452-461.	1.6	103
35	Catalytic conversion of cellulose into 5-hydroxymethylfurfural in high yields via a two-step process. Cellulose, 2011, 18, 1327-1333.	2.4	103
36	Review of CO2–CH4 clathrate hydrate replacement reaction laboratory studies – Properties and kinetics. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 517-537.	2.7	100

#	Article	IF	CITATIONS
37	Cycloamination strategies for renewable N-heterocycles. Green Chemistry, 2020, 22, 582-611.	4.6	100
38	Characterization of the dispersion process for NiFe 2 O 4 nanocrystals in a silica matrix with infrared spectroscopy and electron paramagnetic resonance. Journal of Molecular Structure, 2001, 560, 87-93.	1.8	99
39	Eco-friendly Method for Efficient Conversion of Cellulose into Levulinic Acid in Pure Water with Cellulase-Mimetic Solid Acid Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 2421-2427.	3.2	98
40	Solubility of Lead(II) Oxide and Copper(II) Oxide in Subcritical and Supercritical Water. Journal of Chemical & Engineering Data, 1999, 44, 1422-1426.	1.0	97
41	Catalytic hydrothermal gasification of cellulose and glucose. International Journal of Hydrogen Energy, 2008, 33, 981-990.	3.8	97
42	Depolymerization of sodium alginate under hydrothermal conditions. Carbohydrate Polymers, 2010, 80, 296-302.	5.1	89
43	Adsorption of 1-Butyl-3-Methylimidazolium Chloride Ionic Liquid by Functional Carbon Microspheres from Hydrothermal Carbonization of Cellulose. Environmental Science & Technology, 2013, 47, 2792-2798.	4.6	88
44	Water gas shift reaction kinetics under noncatalytic conditions in supercritical water. Journal of Supercritical Fluids, 2004, 29, 113-119.	1.6	87
45	Efficient conversion of fructose into 5-ethoxymethylfurfural with hydrogen sulfate ionic liquids as co-solvent and catalyst. Chemical Engineering Journal, 2017, 314, 508-514.	6.6	84
46	Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities (550–1000Âkg/m3). Cellulose, 2005, 12, 595-606.	2.4	81
47	Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid–water mixtures. Bioresource Technology, 2012, 109, 224-228.	4.8	80
48	Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature. Green Chemistry, 2017, 19, 76-81.	4.6	79
49	Black liquor-derived calcium-activated biochar for recovery of phosphate from aqueous solutions. Bioresource Technology, 2019, 294, 122198.	4.8	76
50	Dehydration of lactic acid to acrylic acid in high temperature water at high pressures. Journal of Supercritical Fluids, 2009, 50, 257-264.	1.6	73
51	Rapid separation of shikimic acid from Chinese star anise (Illicium verum Hook. f.) with hot water extraction. Separation and Purification Technology, 2009, 69, 102-108.	3.9	71
52	One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of glucose for cellulose hydrolysis. Catalysis Communications, 2014, 57, 50-54.	1.6	69
53	N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks. Nature Communications, 2019, 10, 699.	5.8	69
54	Catalytic decarboxylation of acetic acid with zirconia catalyst in supercritical water. Applied Catalysis A: General, 2001, 219, 149-156.	2.2	68

#	Article	IF	CITATIONS
55	Efficient catalytic transfer hydrogenation of biomass-based furfural to furfuryl alcohol with recycable Hf-phenylphosphonate nanohybrids. Catalysis Today, 2019, 319, 84-92.	2.2	68
56	Efficient one-pot production of 5-hydroxymethylfurfural from inulin in ionic liquids. Green Chemistry, 2010, 12, 1855.	4.6	66
57	Decentralized chemical processes with supercritical fluid technology for sustainable society. Journal of Supercritical Fluids, 2009, 47, 628-636.	1.6	64
58	Separation of cashew (Anacardium occidentaleL.) nut shell liquid with supercritical carbon dioxide. Bioresource Technology, 2003, 88, 1-7.	4.8	62
59	Phase behavior and reaction of polyethylene terephthalate–water systems at pressures up to 173 MPa and temperatures up to 490°C. Journal of Supercritical Fluids, 1999, 15, 229-243.	1.6	61
60	Measurement and Correlation of High Pressure Densities of Ionic Liquids, 1-Ethyl-3-methylimidazolium <scp>l</scp> -Lactate ([emim][Lactate]), 2-Hydroxyethyl-trimethylammonium <scp>l</scp> -Lactate ([(C ₂ H ₄ OH)(CH ₃) ₃ N][Lactate]), and 1-Butyl-3-methylimidazolium Chloride ([bmim][Cl]). Journal of Chemical & Engineering Data, 2011,	1.0	61
61	Binary hydrogenâ€ŧetrahydrofuran clathrate hydrate formation kinetics and models. AICHE Journal, 2008, 54, 3007-3016.	1.8	60
62	Densities at Pressures up to 200 MPa and Atmospheric Pressure Viscosities of Ionic Liquids 1-Ethyl-3-methylimidazolium Methylphosphate, 1-Ethyl-3-methylimidazolium Diethylphosphate, 1-Butyl-3-methylimidazolium Acetate, and 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data, 2015, 60, 876-885.	1.0	59
63	Supercritical carbon dioxide (SC-CO2) extraction and fractionation of palm kernel oil from palm kernel as cocoa butter replacers blend. Journal of Food Engineering, 2006, 73, 210-216.	2.7	58
64	Supercritical carbon dioxide (SC-CO2) extraction of palm kernel oil from palm kernel. Journal of Food Engineering, 2007, 79, 1007-1014.	2.7	58
65	Preparation of Highly Active, Low Au-Loaded, Au/CeO2 Nanoparticle Catalysts That Promote CO Oxidation at Ambient Temperatures. Journal of Physical Chemistry C, 2010, 114, 793-798.	1.5	58
66	Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems. Journal of Supercritical Fluids, 2009, 47, 431-446.	1.6	54
67	Mg-coordinated self-assembly of MgO-doped ordered mesoporous carbons for selective recovery of phosphorus from aqueous solutions. Chemical Engineering Journal, 2021, 406, 126748.	6.6	54
68	Performance of a natural convection circulation system for supercritical fluids. Journal of Supercritical Fluids, 2005, 36, 70-80.	1.6	53
69	Measurement of High-Pressure Densities and Atmospheric Viscosities of Ionic Liquids: 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide and 1-Hexyl-3-methylimidazolium Chloride. Journal of Chemical & Engineering Data, 2014, 59, 709-717.	1.0	52
70	lsomerization of glucose at hydrothermal condition with TiO 2 , ZrO 2 , CaO-doped ZrO 2 or TiO 2 -doped ZrO 2. Catalysis Today, 2016, 274, 67-72.	2.2	51
71	Interfacial tension between water and high pressure CO2 in the presence of hydrocarbon surfactants. Fluid Phase Equilibria, 2007, 257, 163-168.	1.4	50
72	Effects of light intensity and temperature on photoautotrophic growth of a green microalga, Chlorococcum littorale. Biotechnology Reports (Amsterdam, Netherlands), 2015, 7, 24-29.	2.1	50

#	Article	IF	CITATIONS
73	Direct observation of polyvinylchloride degradation in water at temperatures up to 500°C and at pressures up to 700 MPa. Journal of Applied Polymer Science, 2007, 106, 1075-1086.	1.3	47
74	Blending of supercritical carbon dioxide (SC-CO2) extracted palm kernel oil fractions and palm oil to obtain cocoa butter replacers. Journal of Food Engineering, 2007, 78, 1397-1409.	2.7	47
75	Phase Equilibrium Measurements of Hydrogenâ^'Tetrahydrofuran and Hydrogenâ^'Cyclopentane Binary Clathrate Hydrate Systems. Journal of Chemical & Engineering Data, 2010, 55, 2214-2218.	1.0	47
76	Removal of hydrophilic ionic liquids from aqueous solutions by adsorption onto high surface area oxygenated carbonaceous material. Chemical Engineering Journal, 2014, 256, 407-414.	6.6	47
77	Perfect recycle and mechanistic role of hydrogen sulfate ionic liquids as additive in ethanol for efficient conversion of carbohydrates into 5-ethoxymethylfurfural. Chemical Engineering Journal, 2017, 323, 287-294.	6.6	47
78	Continuous supercritical hydrothermal synthesis of dispersible zero-valent copper nanoparticles for ink applications in printed electronics. Journal of Supercritical Fluids, 2014, 86, 33-40.	1.6	45
79	Porous carbonaceous materials from hydrothermal carbonization and KOH activation of corn stover for highly efficient CO ₂ capture. Chemical Engineering Communications, 2018, 205, 423-431.	1.5	44
80	Phase behavior and reaction of polyethylene in supercritical water at pressures up to 2.6 GPa and temperatures up to 670°C. Journal of Supercritical Fluids, 2000, 16, 207-216.	1.6	43
81	Formation mechanism and luminescence appearance of Mn-doped zinc silicate particles synthesized in supercritical water. Journal of Solid State Chemistry, 2008, 181, 1307-1313.	1.4	42
82	Methodology for Replacing Dipolar Aprotic Solvents Used in API Processing with Safe Hydrogen-Bond Donor and Acceptor Solvent-Pair Mixtures. Organic Process Research and Development, 2017, 21, 114-124.	1.3	42
83	Critical assessment of reaction pathways for conversion of agricultural waste biomass into formic acid. Green Chemistry, 2021, 23, 1536-1561.	4.6	42
84	Dissolution of mechanically milled chitin in high temperature water. Carbohydrate Polymers, 2014, 106, 172-178.	5.1	41
85	Replacement of Hazardous Chemicals Used in Engineering Plastics with Safe and Renewable Hydrogen-Bond Donor and Acceptor Solvent-Pair Mixtures. ACS Sustainable Chemistry and Engineering, 2015, 3, 1881-1889.	3.2	41
86	Highâ€Performance Supercapacitor Electrode Materials from Chitosan via Hydrothermal Carbonization and Potassium Hydroxide Activation. Energy Technology, 2017, 5, 452-460.	1.8	41
87	Mechanistic role of protonated polar additives in ethanol for selective transformation of biomass-related compounds. Applied Catalysis B: Environmental, 2020, 264, 118509.	10.8	40
88	Carotenoid production from <i>Chlorococcum littorale</i> in photoautotrophic cultures with downstream supercritical fluid processing. Journal of Separation Science, 2009, 32, 2327-2335.	1.3	39
89	Nutrient recovery from municipal sludge for microalgae cultivation with two-step hydrothermal liquefaction. Algal Research, 2016, 18, 61-68.	2.4	39
90	Volumetric behavior of ethyl acetate, ethyl octanoate, ethyl laurate, ethyl linoleate, and fish oil ethyl esters in the presence of supercritical CO2. Journal of Supercritical Fluids, 1998, 13, 29-36.	1.6	38

#	Article	IF	CITATIONS
91	Production of organic acids from alginate in high temperature water. Journal of Supercritical Fluids, 2012, 65, 39-44.	1.6	38
92	Dissolution and recovery of cellulose from 1-butyl-3-methylimidazolium chloride in presence of water. Carbohydrate Polymers, 2013, 92, 651-658.	5.1	38
93	Analysis of the Cybotactic Region of Two Renewable Lactone–Water Mixed-Solvent Systems that Exhibit Synergistic Kamlet–Taft Basicity. Journal of Physical Chemistry B, 2016, 120, 4467-4481.	1.2	38
94	Synthesis of ethyl levulinate over amino-sulfonated functional carbon materials. Renewable Energy, 2020, 157, 951-958.	4.3	38
95	Destruction of deca-chlorobiphenyl in supercritical water under oxidizing conditions with and without Na2CO3. Journal of Supercritical Fluids, 2005, 33, 247-258.	1.6	37
96	Separation of palm kernel oil from palm kernel with supercritical carbon dioxide using pressure swing technique. Journal of Food Engineering, 2007, 81, 419-428.	2.7	37
97	Analysis of the density effect on partial oxidation of methane in supercritical water. Journal of Supercritical Fluids, 2004, 28, 69-77.	1.6	34
98	Measurement and correlation of infinite dilution partition coefficients of aromatic compounds in the ionic liquid 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6])–CO2 system at temperatures from 313 to 353K and at pressures up to 16MPa. Journal of Supercritical Fluids, 2008, 43, 430-437	1.6	34
99	Pressure profile separation of phenolic liquid compounds from cashew (Anacardium occidentale) shell with supercritical carbon dioxide and aspects of its phase equilibria. Journal of Supercritical Fluids, 2009, 48, 203-210.	1.6	34
100	Mechanism of Glucose Conversion into 5-Ethoxymethylfurfural in Ethanol with Hydrogen Sulfate Ionic Liquid Additives and a Lewis Acid Catalyst. Energy & Fuels, 2018, 32, 8411-8419.	2.5	33
101	Microencapsulation of red palm oil as an oil-in-water emulsion with supercritical carbon dioxide solution-enhanced dispersion. Journal of Food Engineering, 2018, 222, 100-109.	2.7	32
102	Direct one-pot synthesis of ordered mesoporous carbons from lignin with metal coordinated self-assembly. Green Chemistry, 2021, 23, 8632-8642.	4.6	32
103	Direct observation of channel-tee mixing of high-temperature and high-pressure water. Journal of Supercritical Fluids, 2007, 43, 222-227.	1.6	31
104	Effect of inorganic carbon on photoautotrophic growth of microalga <i>Chlorococcum littorale</i> . Biotechnology Progress, 2009, 25, 492-498.	1.3	31
105	Simple modification of the temperature dependence of the Sanchez–Lacombe equation of state. Fluid Phase Equilibria, 2010, 297, 205-209.	1.4	31
106	Adsorption equilibria of rhodium acetylacetonate with MCM-41, MSU-H, and HMS silica substrates in supercritical carbon dioxide for preparing catalytic mesoporous materials. Journal of Supercritical Fluids, 2017, 120, 240-248.	1.6	31
107	Measurement of static dielectric constants of supercritical fluid solvents and cosolvents: Carbon dioxide and argon, carbon dioxide, and methanol at 323 K and pressures to 25 MPa. Journal of Supercritical Fluids, 1990, 3, 162-168.	1.6	30
108	Spectroscopic Analysis of Binary Mixed-Solvent-Polyimide Precursor Systems with the Preferential Solvation Model for Determining Solute-Centric Kamlet–Taft Solvatochromic Parameters. Journal of Physical Chemistry B, 2015, 119, 14738-14749.	1.2	30

#	Article	IF	CITATIONS
109	Nutrient recycle from defatted microalgae (Aurantiochytrium) with hydrothermal treatment for microalgae cultivation. Bioresource Technology, 2017, 228, 186-192.	4.8	30
110	Ferromagnetic Lignin-Derived Ordered Mesoporous Carbon for Catalytic Hydrogenation of Furfural to Furfuryl Alcohol. ACS Sustainable Chemistry and Engineering, 2020, 8, 18157-18166.	3.2	30
111	Measurements of vapor–liquid equilibrium in both binary carbon dioxide–ethanol and ternary carbon dioxide–ethanol–water systems with a newly developed flow-type apparatus. Fluid Phase Equilibria, 2015, 405, 96-100.	1.4	29
112	Antioxidation Properties and Surface Interactions of Polyvinylpyrrolidone-Capped Zerovalent Copper Nanoparticles Synthesized in Supercritical Water. ACS Applied Materials & Interfaces, 2016, 8, 1627-1634.	4.0	28
113	Solvent Polarity of Cyclic Ketone (Cyclopentanone, Cyclohexanone): Alcohol (Methanol, Ethanol) Renewable Mixed-Solvent Systems for Applications in Pharmaceutical and Chemical Processing. Industrial & Engineering Chemistry Research, 2018, 57, 7331-7344.	1.8	28
114	Effects of nitrate and oxygen on photoautotrophic lipid production from Chlorococcum littorale. Bioresource Technology, 2011, 102, 3286-3292.	4.8	27
115	Phase formation of Mn-doped zinc silicate in water at high-temperatures and high-pressures. Journal of Supercritical Fluids, 2007, 43, 214-221.	1.6	26
116	Hydrothermal separation of lignin from bark of Japanese cedar. Journal of Supercritical Fluids, 2018, 133, 696-703.	1.6	26
117	Hydrogen gas-free processes for single-step preparation of transition-metal bifunctional catalysts and one-pot γ-valerolactone synthesis in supercritical CO2-ionic liquid systems. Journal of Supercritical Fluids, 2019, 147, 263-270.	1.6	26
118	Destruction of Decachlorobiphenyl Using Supercritical Water Oxidation. Energy & Fuels, 2004, 18, 1257-1265.	2.5	25
119	Measurement of pure hydrogen and pure carbon dioxide adsorption equilibria for THF clathrate hydrate and tetra-n-butyl ammonium bromide semi-clathrate hydrate. Fluid Phase Equilibria, 2013, 357, 80-85.	1.4	25
120	Preparation and magnetization of hematite nanocrystals with amorphous iron oxide layers by hydrothermal conditions. Materials Research Bulletin, 2002, 37, 949-955.	2.7	24
121	Formation of \hat{I}_{\pm} - and \hat{I}^2 -phase Mn-doped zinc silicate in supercritical water and its luminescence properties at Si/(Zn+Mn) ratios from 0.25 to 1.25. Journal of Crystal Growth, 2008, 310, 4185-4189.	0.7	24
122	Measurement and modeling of CO2 solubility in [bmim]Cl – [bmim][Tf2N] mixed-ionic liquids for design of versatile reaction solvents. Journal of Supercritical Fluids, 2018, 132, 42-50.	1.6	24
123	Control of methanol oxidation by ionic behavior in supercritical water. Chemical Communications, 2001, , 2270-2271.	2.2	23
124	Formation of zinc silicate in supercritical water followed with in situ synchrotron radiation X-ray diffraction. Journal of Supercritical Fluids, 2009, 49, 351-355.	1.6	23
125	A Digital Variable-Angle Rolling-Ball Viscometer for Measurement of Viscosity, Density, and Bubble-Point Pressure of CO2 and Organic Liquid Mixtures. International Journal of Thermophysics, 2010, 31, 1896-1903.	1.0	23
126	The 13 Principles of Green Chemistry and Engineering for a Greener Africa. Green Chemistry, 2011, 13, 1059.	4.6	23

#	Article	IF	CITATIONS
127	Viscosity reduction of celluloseÂ+Â1-butyl-3-methylimidazolium acetate in the presence of CO2. Cellulose, 2013, 20, 1353-1367.	2.4	23
128	Continuous synthesis of Zn2SiO4:Mn2+ fine particles in supercritical water at temperatures of 400–500°C and pressures of 30–35MPa. Journal of Supercritical Fluids, 2010, 54, 266-271.	1.6	21
129	Decomposition kinetics and recycle of binary hydrogenâ€ŧetrahydrofuran clathrate hydrate. AICHE Journal, 2011, 57, 265-272.	1.8	21
130	Reaction of d-glucose in water at high temperatures (410°C) and pressures (180MPa) for the production of dyes and nano-particles. Journal of Supercritical Fluids, 2011, 56, 41-47.	1.6	21
131	Strategies for using hydrogen-bond donor/acceptor solvent pairs in developing green chemical processes with supercritical fluids. Journal of Supercritical Fluids, 2018, 141, 182-197.	1.6	21
132	Hydrogen and carbon dioxide adsorption with tetraâ€ <i>n</i> â€butyl ammonium semiâ€clathrate hydrates for gas separations. AICHE Journal, 2015, 61, 992-1003.	1.8	20
133	High pressure densities for mixed ionic liquids having different functionalities: 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Journal of Chemical Thermodynamics, 2017, 108, 7-17.	1.0	20
134	Controlled Conversion of Proteins into High-Molecular-Weight Peptides without Additives with High-Temperature Water and Fast Heating Rates. ACS Sustainable Chemistry and Engineering, 2017, 5, 7709-7715.	3.2	20
135	Perfluorocarboxylic acid counter ion enhanced extraction of aqueous alkali metal ions with supercritical carbon dioxide. Analyst, The, 1999, 124, 1507-1511.	1.7	19
136	Coaxial probe and apparatus for measuring the dielectric spectra of high pressure liquids and supercritical fluid mixtures. Review of Scientific Instruments, 2000, 71, 4226.	0.6	19
137	Properties and phase equilibria of fluid mixtures as the basis for developing green chemical processes. Fluid Phase Equilibria, 2011, 302, 65-73.	1.4	19
138	Manganese oxide as an alternative to vanadium-based catalysts for effective conversion of glucose to formic acid in water. Green Chemistry, 2022, 24, 315-324.	4.6	19
139	Production of virgin coconut oil microcapsules from oil-in-water emulsion with supercritical carbon dioxide spray drying. Journal of Supercritical Fluids, 2017, 130, 118-124.	1.6	18
140	Bifunctional carbon Ni/NiO nanofiber catalyst based on 5-sulfosalicylic acid for conversion of C5/C6 carbohydrates into ethyl levulinate. Reaction Chemistry and Engineering, 2020, 5, 1759-1767.	1.9	18
141	Hydrothermal Leaching of LiCoO ₂ with Sulfuric Acid, Nitric Acid, and Citric Acid. Kagaku Kogaku Ronbunshu, 2017, 43, 313-318.	0.1	18
142	Analysis of ionic liquid PVT behavior with a Modified Cell Model. Fluid Phase Equilibria, 2009, 281, 127-132.	1.4	17
143	Solid molar volumes of interest to supercritical extraction at 298 K: atropine, berberine hydrochloride hydrate, brucine dihydrate, capsaicin, ergotamine tartrate dihydrate, naphthalene, penicillin V, piperine, quinine, strychnine, theobromine, theophylline, and yohimbine hydrochloride. lournal of Chemical & amp: Engineering Data, 1993, 38, 125-127.	1.0	16
144	Densities of Carbon Dioxide + Methanol Mixtures at Temperatures from 313.2 to 323.2 K and at Pressures from 10 to 20 MPa. Journal of Chemical & Engineering Data, 2002, 47, 608-612.	1.0	16

9

#	Article	IF	CITATIONS
145	Regioselectivity of phenol alkylation in supercritical water. Green Chemistry, 2002, 4, 449-451.	4.6	16
146	Copolymerization of carbon dioxide and ethyl vinyl ether at subcritical and supercritical conditions. Journal of Applied Polymer Science, 2003, 89, 3167-3174.	1.3	16
147	Preparation and Transport Properties of New Oxide Ion Conductors KNb1-xMgxO3-Îby High Temperature and Pressure. Chemistry of Materials, 2003, 15, 889-898.	3.2	16
148	Ionic liquid structural effects on solute partitioning in biphasic ionic liquid and supercritical carbon dioxide systems. Fluid Phase Equilibria, 2010, 294, 114-120.	1.4	16
149	Solubility of flavone, 6-methoxyflavone and anthracene in supercritical CO2 with/without a co-solvent of ethanol correlated by using a newly proposed entropy-based solubility parameter. Fluid Phase Equilibria, 2016, 425, 65-71.	1.4	16
150	Solvents take control. Nature Catalysis, 2018, 1, 176-177.	16.1	16
151	A method for the calculation of gas-liquid critical temperatures and pressures of multicomponent mixtures. Industrial & Engineering Chemistry Process Design and Development, 1983, 22, 672-676.	0.6	15
152	An Effective Technique for Reading Research Articles - The Japanese KENSHU Method. Journal of Chemical Education, 1997, 74, 186.	1.1	15
153	Supercritical fluid extraction of alkali metal ions using crown ethers with perfluorocarboxylic acid from aqueous solution. Analytical Communications, 1999, 36, 51-52.	2.2	15
154	Measurement and correlation of supercritical CO2 and ionic liquid systems for design of advanced unit operations. Frontiers of Chemical Engineering in China, 2009, 3, 12-19.	0.6	15
155	Infinite dilution partition coefficients of benzene derivative compounds in supercritical carbon dioxide+ionic liquid systems: 1-butyl-3-methylimidazolium chloride [bmim][Cl], 1-butyl-3-methylimidazolium acetate [bmim][Ac] and 1-butyl-3-methylimidazolium octylsulfate [bmim][OcSO4]. Journal of Supercritical Fluids, 2012, 66, 49-58.	1.6	15
156	Does Synergism in Microscopic Polarity Correlate with Extrema in Macroscopic Properties for Aqueous Mixtures of Dipolar Aprotic Solvents?. Journal of Physical Chemistry B, 2017, 121, 6033-6041.	1.2	15
157	Measurement of high pressure densities and atmospheric pressure viscosities of alkyl phosphate anion ionic liquids and correlation with the ε â^— -modified Sanchez-Lacombe equation of state. Journal of Chemical Thermodynamics, 2017, 104, 73-81.	1.0	15
158	Aspects of solvent polarity and solvent properties in developing efficient systems for processing biomass with ionic liquid mixtures and supercritical CO2. Journal of Supercritical Fluids, 2018, 134, 12-20.	1.6	15
159	Fractionation of hops-extract–ethanol solutions using dense CO2 with a counter-current extraction column. Journal of Supercritical Fluids, 2018, 136, 37-43.	1.6	15
160	Complete dechlorination of lindane over N-doped porous carbon supported Pd catalyst at room temperature and atmospheric pressure. Science of the Total Environment, 2020, 719, 137534.	3.9	15
161	The critical temperatures of isomeric pentanols and heptanols. Fluid Phase Equilibria, 1986, 31, 161-170.	1.4	14
162	Application of Cubic Equations of State to Polar Fluids and Fluid Mixtures. ACS Symposium Series, 1986, , 434-451.	0.5	14

#	Article	IF	CITATIONS
163	Reactive phase behavior of aluminum nitrate in high temperature and supercritical water. Hydrometallurgy, 2002, 65, 159-175.	1.8	14
164	Local density augmentation around acetophenone N,N,N′,N′-tetramethylbenzidine exciplex in supercritical water. Chemical Physics Letters, 2004, 393, 31-35.	1.2	14
165	Winterization of Vegetable Oil Blends for Biodiesel Fuels and Correlation Based on Initial Saturated Fatty Acid Constituents. Energy & Fuels, 2016, 30, 4841-4847.	2.5	14
166	Fundamentals of Acoustic Cavitation in Sonochemistry. Biofuels and Biorefineries, 2015, , 3-33.	0.5	14
167	Temperature dependence of dielectric spectra of carbon dioxide and methanol mixtures at high-pressures. Fluid Phase Equilibria, 2002, 194-197, 869-877.	1.4	13
168	Energy integration of methane's partial-oxidation in supercritical water and exergy analysis. Applied Energy, 2002, 71, 205-214.	5.1	13
169	Restructuring mechanism of NbO6 octahedrons in the crystallization of KNbO3 in supercritical water. Journal of Supercritical Fluids, 2011, 58, 279-285.	1.6	13
170	Historical Background and Applications. Supercritical Fluid Science and Technology, 2013, 4, 175-273.	0.5	13
171	Reduction of gelatinization temperatures of starch blend suspensions with supercritical CO2 treatment. Journal of Supercritical Fluids, 2014, 95, 499-505.	1.6	13
172	Development of a simple method for predicting CO2 enhancement of H2 gas solubility in ionic liquids. Journal of Supercritical Fluids, 2015, 96, 162-170.	1.6	13
173	Measurement and Correlation of High-Pressure Densities and Atmospheric Viscosities of Ionic Liquids: Bis(trifluoromethylsulfonyl)imide, 1-Ethyl-3-methylimidazolium Tetracyanoborate, and 1-Hexyl-3-methylimidazolium Tetracyanoborate. Journal of Chemical & Engineering Data, 2018, 63,	1.0	13
174	Role of impurity components and pollutant removal processes in catalytic oxidation of o-xylene from simulated coal-fired flue gas. Science of the Total Environment, 2021, 764, 142805.	3.9	13
175	Selective conversion of furfuryl alcohol to levulinic acid by SO3H-containing silica nanoflower in GVL/H2O system. Renewable Energy, 2021, 171, 124-132.	4.3	13
176	Critical Assessment of Reaction Pathways for Next-Generation Biofuels from Renewable Resources: 5-Ethoxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2022, 10, 9002-9021.	3.2	13
177	Temperature Dependence of Local Density Augmentation for AcetophenoneN,N,Nâ€ [~] ,Nâ€ [~] -Tetramethylbenzidine Exciplex in Supercritical Water. Journal of Physical Chemistry A, 2005, 109, 7353-7358.	1.1	12
178	Crystallization trigger of Mn-doped zinc silicate in supercritical water via Zn, Mn, Si sources and complexing agent ethylenediamine tetraacetic acid. Materials Chemistry and Physics, 2010, 121, 330-334.	2.0	12
179	Hydrolysis of cellulose to produce glucose with solid acid catalysts in 1-butyl-3-methyl-imidazolium chloride ([bmlm][Cl]) with sequential water addition. Biomass Conversion and Biorefinery, 2014, 4, 323-331.	2.9	12
180	Variation of photoautotrophic fatty acid production from a highly <scp>CO</scp> ₂ tolerant alga, <i><scp>C</scp>hlorococcum littorale</i> , with inorganic carbon over narrow ranges of p <scp>H</scp> . Biotechnology Progress, 2015, 31, 1053-1057.	1.3	12

#	Article	IF	CITATIONS
181	Separation factors for [amim]Cl–CO2 biphasic systems from high pressure density and partition coefficient measurements. Separation and Purification Technology, 2015, 155, 139-148.	3.9	12
182	Viscosity and density of poly(ethylene glycol) and its solution with carbon dioxide at 353.2 K and 373.2 K at pressures up to 15 MPa. Journal of Supercritical Fluids, 2015, 97, 63-73.	1.6	12
183	Vapor-liquid distribution coefficients of hops extract in high pressure CO2 and ethanol mixtures and data correlation with entropy-based solubility parameters. Fluid Phase Equilibria, 2017, 434, 44-48.	1.4	12
184	Supercritical carbon dioxide extraction of \hat{I}_{\pm} -mangostin from mangosteen pericarp with virgin coconut oil as co-extractant and in-vitro bio-accessibility measurement. Process Biochemistry, 2019, 87, 213-220.	1.8	12
185	Synthesis of self-renewing Fe(0)-dispersed ordered mesoporous carbon for electrocatalytic reduction of nitrates to nitrogen. Science of the Total Environment, 2022, 836, 155640.	3.9	12
186	Quantitative extraction of aqueous alkali metal ions using supercritical carbon dioxide and polyethylene glycol ligands. Chemical Communications, 2000, , 1381-1382.	2.2	11
187	Synthesis of alkali niobate K 1â^'x Na x NbO 3 nanoparticles using a supercritical water flow system. Journal of Supercritical Fluids, 2016, 107, 1-8.	1.6	11
188	Local density augmentation from fluorescence lifetime for anthracene N,N-dimethylaniline exciplex in supercritical carbon dioxide. Chemical Physics Letters, 2002, 357, 168-172.	1.2	10
189	Proton concentration of supercritical water and high-concentrated carbon dioxide mixture using UV–vis spectroscopy. Fluid Phase Equilibria, 2007, 257, 177-182.	1.4	10
190	Heat Transfer and Finite-Difference Methods. Supercritical Fluid Science and Technology, 2013, , 557-615.	0.5	10
191	Correspondence between Spectral-Derived and Viscosity-Derived Local Composition in Binary Liquid Mixtures Having Specific Interactions with Preferential Solvation Theory. Journal of Physical Chemistry B, 2018, 122, 10894-10906.	1.2	10
192	Hydrothermal Extraction of Antioxidant Compounds from Green Coffee Beans and Decomposition Kinetics of 3- <i>o</i> -Caffeoylquinic Acid. Industrial & Engineering Chemistry Research, 2018, 57, 7624-7632.	1.8	10
193	Catalytic hydrogenation of levulinic acid in ionic liquid mixtures using hydrogen gas in high-pressure CO2. Journal of Supercritical Fluids, 2020, 164, 104891.	1.6	10
194	Selective hydrogenation of glucose to sorbitol with tannic acid-based porous carbon sphere supported Ni–Ru bimetallic catalysts. Green Energy and Environment, 2023, 8, 1719-1727.	4.7	10
195	An easy to construct, economical, safe, highâ€pressure magnetic pump for pressures to 140 MPa suitable for circulation of supercritical fluids. Review of Scientific Instruments, 1990, 61, 2474-2475.	0.6	9
196	High-pressure vapor-liquid equilibrium data of the 10-component system hydrogen, carbon monoxide, carbon dioxide, water, methane, ethane, propane, methanol, ethanol, and 1-propanol at 313.4 and 333.4 K. Journal of Chemical & Engineering Data, 1990, 35, 67-69.	1.0	9
197	Correlation of supercritical CO ₂ –ionic liquid vapor–liquid equilibria with the <i>ε</i> *â€modified Sanchez–Lacombe equation of state. Asia-Pacific Journal of Chemical Engineering, 2012, 7, S95.	0.8	9
198	Partition coefficients of furan derivative compounds in 1-n-butyl-3-methylimidazolium chloride ([bmim][Cl])–supercritical CO2 biphasic systems and their correlation and prediction with the LSER-δ model. Journal of Supercritical Fluids, 2013, 79, 32-40.	1.6	9

#	Article	IF	CITATIONS
199	Thermal analysis and mechanism of α-Zn2SiO4:Mn2+ formation from zinc oxalate dihydrate under hydrothermal conditions. Materials Chemistry and Physics, 2013, 137, 1025-1030.	2.0	9
200	Easy emission-color-control of Mn-doped zinc silicate phosphor by use of pH and supercritical water conditions. Journal of Supercritical Fluids, 2015, 98, 65-69.	1.6	9
201	Predictive dimensionless solubility (pDS) model for solid solutes in supercritical CO2 that requires only pure-component physical properties. Chemical Engineering Research and Design, 2018, 136, 251-261.	2.7	9
202	Measurement and modeling of infinite dilution activity coefficients of organic compounds in an equimolar ionic liquid mixture of [Bmim]Cl and [Bmim][Tf2N]. Fluid Phase Equilibria, 2019, 488, 72-78.	1.4	9
203	Methane clathrate hydrate dissociation analyzed with Raman spectroscopy and a thermodynamic mass transfer model considering cage occupancy. Fluid Phase Equilibria, 2019, 489, 41-47.	1.4	9
204	Amino-functional biocarbon with CO2-responsive property for removing copper(II) ions from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126304.	2.3	9
205	New equation of state based on the significant structure model. Fluid Phase Equilibria, 1989, 47, 17-38.	1.4	8
206	Prediction and correlation of triglyceride–solvent solid–liquid equilibria with activity coefficient models. Fluid Phase Equilibria, 1998, 145, 53-68.	1.4	8
207	"Totsu―window optical cell for absorption and emission studies of high-pressure liquids and supercritical fluids. Journal of Supercritical Fluids, 2004, 29, 313-317.	1.6	8
208	Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures. Review of Scientific Instruments, 2007, 78, 115111.	0.6	8
209	Production of d-glucose from pseudo paper sludge with hydrothermal treatment. Biomass and Bioenergy, 2010, 34, 844-850.	2.9	8
210	Continuous hydrothermal synthesis of ZnGa2O4:Mn2+ nanoparticles at temperatures of 300–500°C and pressures of 25–35MPa. Journal of Supercritical Fluids, 2013, 77, 1-6.	1.6	8
211	Kinetic Study of Hydrothermal Leaching of Lithium Cobalt Oxide with Citric Acid. Kagaku Kogaku Ronbunshu, 2019, 45, 147-157.	0.1	8
212	Phase equilibria in the n-hexane + diethylamine system. Fluid Phase Equilibria, 1985, 23, 79-88.	1.4	7
213	Improving Creativity, Solving Problems, and Communicating with Peers in Engineering and Science Laboratories. Journal of Chemical Education, 1994, 71, 592.	1.1	7
214	The morphological evolution of the Bi2Mo3O12(010) surface in air–H2O atmospheres. Journal of Catalysis, 2003, 213, 151-162.	3.1	7
215	Predictive Framework for Estimating Dipolarity/Polarizability of Binary Nonpolar–Polar Mixtures with Relative Normalized Absorption Wavelength and Gas-Phase Dipole Moment. Industrial & Engineering Chemistry Research, 2019, 58, 18986-18996.	1.8	7
216	Mechanism of selective hydrolysis of alginates under hydrothermal conditions. Journal of Bioresources and Bioproducts, 2022, 7, 173-179.	11.8	7

#	Article	IF	CITATIONS
217	The calculation of critical points of fluid mixtures-effect of improved pure component critical point representation. Fluid Phase Equilibria, 1983, 14, 265-272.	1.4	6
218	Measurement and modeling of adsorption equilibria of imidazolium-based ionic liquids on activated carbon from aqueousÂsolutions. Fluid Phase Equilibria, 2017, 441, 17-23.	1.4	6
219	Measurement and correlation of flavanone, tangeritin, nobiletin, 6-hydroxyflavanone and 7-hydroxyflavone solubilities in supercritical CO 2. Journal of Supercritical Fluids, 2017, 128, 166-172.	1.6	6
220	Mini-review on application of analytical centrifugation, ultracentrifugation and centrifugal devices to phase equilibria and separation processes. Fluid Phase Equilibria, 2022, 558, 113457.	1.4	6
221	Calculation of critical loci with an equation of state based on the significant structure model. Fluid Phase Equilibria, 1989, 52, 103-110.	1.4	5
222	Supercritical extraction of fat from phospholipid biomembrane structures. Journal of Supercritical Fluids, 1994, 7, 191-196.	1.6	5
223	Temperature dependence of local density augmentation around exciplex in supercritical carbon dioxide. Fluid Phase Equilibria, 2004, 219, 37-40.	1.4	5
224	Local density augmentation of excited 1-(dimethylamino)naphthalene in supercritical water. Journal of Supercritical Fluids, 2006, 39, 206-210.	1.6	5
225	Systems, Devices and Processes. Supercritical Fluid Science and Technology, 2013, , 55-119.	0.5	5
226	Equations of State and Formulations for Mixtures. Supercritical Fluid Science and Technology, 2013, , 333-480.	0.5	5
227	Production of Versatile Platform Chemical 5-Hydroxymethylfurfural from Biomass in Ionic Liquids. Biofuels and Biorefineries, 2014, , 223-254.	0.5	5
228	Measurement of infinite dilution partition coefficients of isomeric benzene derivatives in [bmim][Tf2N]-CO2 biphasic system and correlation with the ePC-SAFT equation of state. Fluid Phase Equilibria, 2016, 420, 36-43.	1.4	5
229	Synthesis of ferroelectric K1-xNaxNb1-yTayO3 nanoparticles using a supercritical water flow system. Journal of Supercritical Fluids, 2017, 123, 101-108.	1.6	5
230	A precise deconvolution method to derive methane hydrate cage occupancy ratios using Raman spectroscopy. Chemical Engineering Science, 2020, 214, 115361.	1.9	5
231	Supercritical Hydrothermal Synthesis of Polyacrylic Acid-Capped Copper Nanoparticles and Their Feasibility as Conductive Nanoinks. Journal of Electronic Materials, 2020, 49, 5681-5686.	1.0	5
232	Hydrogen Formation from Biomass Model Compounds and Real Biomass by Partial Oxidation in High Temperature High Pressure Water. Journal of the Japan Petroleum Institute, 2012, 55, 219-228.	0.4	5
233	Application of the Preferential Solvation Viscosity Model to Binary Liquid Mixtures: Aqueous, Nonaqueous, Ionic Liquid, and Deep Eutectic Solvent Systems. Industrial & Engineering Chemistry Research, 2019, 58, 14991-15002.	1.8	4
234	Measurement and correlation of vapor-liquid distribution coefficients of flavonoids in high pressure carbon dioxide – ethanol – water systems. Fluid Phase Equilibria, 2019, 489, 90-98.	1.4	4

#	Article	IF	CITATIONS
235	Effective conversion of fructose to 5-ethoxymethylfurfural with brÄnsted acid site (S/Cl)-functional carbon catalysts. Journal of Bioresources and Bioproducts, 2022, 7, 33-42.	11.8	4
236	Activation of oxide-ion conduction in KNbO3 by addition of Mg2+. Applied Physics Letters, 2002, 81, 2899-2901.	1.5	3
237	Cosolvent effect on enhancement of reaction rate constant in near-critical region. Journal of Supercritical Fluids, 2003, 27, 247-253.	1.6	3
238	Chemical Reactions of C1 Compounds in Near-Critical and Supercritical Water. ChemInform, 2005, 36, no.	0.1	3
239	Reaction of cellulose–starch gel mixtures in water at high-temperatures and pressures for developing continuous batch microreactor systems. Bioresource Technology, 2008, 99, 4338-4345.	4.8	3
240	Water under Hydrothermal, Supercritical, and High Pressure Conditions as Key to Developing Green Processes and New Technologies. , 2010, , .		3
241	The Pyrolysis of Oil Sand Bitumen in the Presence of Water and Toluene. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2012, 91, 303-310.	0.2	3
242	Multiple adsorption resistance model for constituent molecular effects in hydrogen clathration kinetics in clathrate hydrate particles. Chemical Engineering Science, 2014, 108, 270-282.	1.9	3
243	Fundamentals of Bifunctional Catalysis for Transforming Biomass-Related Compounds into Chemicals and Biofuels. Biofuels and Biorefineries, 2017, , 3-30.	0.5	3
244	Sustainable Approaches for Materials Engineering With Supercritical Carbon Dioxide. , 2020, , 395-414.		3
245	Preparation of Soluble Peptide from Defatted Soybean in the Presence of Base Additives in Hydrothermal Condition and Evaluation of its Function. Kagaku Kogaku Ronbunshu, 2018, 44, 78-84.	0.1	3
246	Transferring waste minimization solutions between industrial categories with a unit operations approach: I. Chemical and plating industries. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1995, 30, 379-406.	0.1	2
247	Chemical Vocabulary and Essentials. Supercritical Fluid Science and Technology, 2013, 4, 1-54.	0.5	2
248	Continuous Process for HMF Production from Cellulose with Ionic Liquid ([BmIm]Cl)-Water Mixtures. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2017, 96, 417-429.	0.2	2
249	Controlled conversion of sodium hyaluronate into low-molecular-weight polymers without additives using high-temperature water and fast-heating-rates. Journal of Supercritical Fluids, 2020, 155, 104638.	1.6	2
250	Distribution coefficients of salicylic acid and methyl salicylate in high-pressure CO2 – water - ethanol systems. Journal of Supercritical Fluids, 2020, 166, 105013.	1.6	2
251	Effect of Temperature, Time and ZnCl ₂ Addition on Formation of Oxygenated Functional Groups on the Surface of Flexible Carbon Prepared by Hydrothermal Carbonization. Kagaku Kogaku Ronbunshu, 2018, 44, 123-128.	0.1	2
252	Liquid-liquid equilibria with an equation of state based on the significant structure model. Fluid Phase Equilibria, 1994, 97, 29-41.	1.4	1

#	Article	IF	CITATIONS
253	Modeling of diffusivities in supercritical carbon dioxide using a linear solvation energy relationship. Journal of Supercritical Fluids, 2005, 35, 18-25.	1.6	1
254	Chemical Equilibria and Reaction Kinetics. Supercritical Fluid Science and Technology, 2013, 4, 617-688.	0.5	1
255	Corrigendum to "Solid acid mediated hydrolysis of biomass for producing biofuels―[Prog Energ Combust Sci (2012) 672–690]. Progress in Energy and Combustion Science, 2013, 39, 284.	15.8	1
256	Corrigendum to â€~Nutrient recycle from defatted microalgae (Aurantiochytrium) with hydrothermal treatment for microalgae cultivation' [Bioresour. Technol. 228 (2017) 186–192]. Bioresource Technology, 2017, 234, 476-477.	4.8	1
257	Special Issue on Hydrothermal and Solvothermal Approaches toward Bio-products. Journal of Supercritical Fluids, 2020, 165, 104975.	1.6	1
258	Supercritical water pretreatment method for analysis of strontium and uranium in soil (Andosols). Applied Radiation and Isotopes, 2021, 168, 109465.	0.7	1
259	Effect of Lewis and BrÃ,nsted Acids on Conversion of Chitin Monomer <i>N</i> -Acetyl-D-Glucosamine (ClcNAc) to Furan Derivatives in [Bmim]Cl Ionic Liquid. Kagaku Kogaku Ronbunshu, 2019, 45, 141-146.	0.1	1
260	Review of Biomass Conversion in High Pressure High Temperature Water (HHW) Including Recent Experimental Results (Isomerization and Carbonization). Green Chemistry and Sustainable Technology, 2014, , 249-274.	0.4	1
261	Design of functional biocarbons for selective adsorption of 5-hydroxymethylfurfural from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128187.	2.3	1
262	Acetaminophen synthesis and encapsulation using safe mixed-solvents and solution enhanced dispersion by supercritical CO2. Journal of Supercritical Fluids, 2022, 188, 105669.	1.6	1
263	CRITICAL POINT PREDICTION USING A MULTI-FLUID GENERALIZED CORRESPONDING STATES PRINCIPLE. Chemical Engineering Communications, 1986, 43, 211-223.	1.5	0
264	Conclusions and Suggestions for Further Study. Supercritical Fluid Science and Technology, 2013, , 689-693.	0.5	0
265	Phase Equilibria and Mass Transfer. Supercritical Fluid Science and Technology, 2013, , 481-556.	0.5	0
266	Chemical Information and Know-How. Supercritical Fluid Science and Technology, 2013, , 121-174.	0.5	0
267	Underlying Thermodynamics and Practical Expressions. Supercritical Fluid Science and Technology, 2013, 4, 275-332.	0.5	0
268	Energy and Supercritical Fluids. , 2015, , 75-91.		0
269	Additive-free hydrothermal leaching method with low environmental burden for screening of strontium in soil. Environmental Science and Pollution Research, 2021, 28, 55725-55735.	2.7	0
270	Kinetic Analysis and Reaction Mechanism of Hydrothermal Hydrolysis of Rapeseed Hulls to Produce Polyphenols. Kagaku Kogaku Ronbunshu, 2018, 44, 189-196.	0.1	0