
Harry Aiking

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6785614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Future protein supply. Trends in Food Science and Technology, 2011, 22, 112-120.	7.8	346
2	Exploring dietary guidelines based on ecological and nutritional values: A comparison of six dietary patterns. Food Policy, 2014, 44, 36-46.	2.8	278
3	"Meatless days―or "less but better� Exploring strategies to adapt Western meat consumption to health and sustainability challenges. Appetite, 2014, 76, 120-128.	1.8	263
4	Bioenergy revisited: Key factors in global potentials of bioenergy. Energy and Environmental Science, 2010, 3, 258.	15.6	234
5	The next protein transition. Trends in Food Science and Technology, 2020, 105, 515-522.	7.8	168
6	Towards a reduced meat diet: Mindset and motivation of young vegetarians, low, medium and high meat-eaters. Appetite, 2017, 113, 387-397.	1.8	167
7	Help the climate, change your diet: A cross-sectional study on how to involve consumers in a transition to a low-carbon society. Appetite, 2016, 98, 19-27.	1.8	156
8	On the merits of plant-based proteins for global food security: Marrying macro and micro perspectives. Ecological Economics, 2011, 70, 1259-1265.	2.9	146
9	Sharing the burden of financing adaptation to climate change. Global Environmental Change, 2009, 19, 411-421.	3.6	144
10	Protein production: planet, profit, plus people?. American Journal of Clinical Nutrition, 2014, 100, 483S-489S.	2.2	128
11	Meat and masculinity among young Chinese, Turkish and Dutch adults in the Netherlands. Appetite, 2015, 89, 152-159.	1.8	117
12	Protein consumption and sustainability: Diet diversity in EU-15. Ecological Economics, 2006, 59, 267-274.	2.9	114
13	Adaptation to Cadmium by <i>Klebsiella aerogenes</i> Growing in Continuous Culture Proceeds Mainly via Formation of Cadmium Sulfide. Applied and Environmental Microbiology, 1982, 44, 938-944.	1.4	114
14	Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture. Applied and Environmental Microbiology, 1984, 47, 374-377.	1.4	114
15	Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture. Applied and Environmental Microbiology, 1985, 50, 1262-1267.	1.4	89
16	Prospects for pro-environmental protein consumption in Europe: Cultural, culinary, economic and psychological factors. Appetite, 2018, 121, 29-40.	1.8	80
17	Food sustainability. British Food Journal, 2004, 106, 359-365.	1.6	79
18	Strategies towards healthy and sustainable protein consumption: A transition framework at the levels of diets, dishes, and dish ingredients. Food Quality and Preference, 2019, 73, 171-181.	2.3	74

HARRY AIKING

#	Article	IF	CITATIONS
19	Pursuing a Low Meat Diet to Improve Both Health and Sustainability: How Can We Use the Frames that Shape Our Meals?. Ecological Economics, 2017, 142, 238-248.	2.9	71
20	Quantitative structure-activity relationships for polycyclic aromatic hydrocarbons: Correlation between molecular connectivity, physico-chemical properties, bioconcentration and toxicity in Daphnia pulex. Chemosphere, 1984, 13, 227-236.	4.2	60
21	Consumers' motivational associations favoring free-range meat or less meat. Ecological Economics, 2009, 68, 850-860.	2.9	60
22	Active biomonitoring of polycyclic aromatic hydrocarbons by means of mosses. Environmental Pollution, 1992, 76, 15-18.	3.7	58
23	Combining Low Price, Low Climate Impact and High Nutritional Value in One Shopping Basket through Diet Optimization by Linear Programming. Sustainability, 2015, 7, 12837-12855.	1.6	58
24	Proposing a Novel Index Reflecting Both Climate Impact and Nutritional Impact of Food Products. Ecological Economics, 2017, 131, 389-398.	2.9	56
25	Defining a nutritionally healthy, environmentally friendly, and culturally acceptable Low Lands Diet. International Journal of Life Cycle Assessment, 2016, 21, 688-700.	2.2	50
26	Growth and physiology of Candida utilis NCYC 321 in potassium-limited chemostat culture. Archives of Microbiology, 1976, 108, 117-124.	1.0	44
27	Influence of specific growth limitation and dilution rate on the phosphorylation efficiency and cytochrome content of mitochondria of Candida utilis NCYC 321. Archives of Microbiology, 1977, 113, 65-72.	1.0	33
28	Application of a value-based equivalency method to assess environmental damage compensation under the European Environmental Liability Directive. Journal of Environmental Management, 2011, 92, 1461-1470.	3.8	30
29	Response of Rhodopseudomonas capsulata to illumination and growth rate in a light-limited continuous culture. Journal of Bacteriology, 1979, 139, 530-536.	1.0	29
30	Reducing variation in general practitioner referral rates through clinical engagement and peer review of referrals: a service improvement project. Quality in Primary Care, 2011, 19, 263-72.	0.8	26
31	Do EU consumers think about meat reduction when considering to eat a healthy, sustainable diet and to have a role in food system change?. Appetite, 2022, 170, 105880.	1.8	25
32	Swimming pool chlorination: a health hazard?. Toxicology Letters, 1994, 72, 375-380.	0.4	24
33	Unsustainable dietary habits of specific subgroups require dedicated transition strategies: Evidence from the Netherlands. Food Policy, 2018, 79, 44-57.	2.8	22
34	Fish as an alternative protein – A consumer-oriented perspective on its role in a transition towards more healthy and sustainable diets. Appetite, 2020, 152, 104721.	1.8	21
35	Rubidium as a probe for function and transport of potassium in the yeast Candida utilis NCYC 321, grown in chemostat culture. Archives of Microbiology, 1977, 115, 215-221.	1.0	20
36	In search of indicators to assess the environmental impact of diets. International Journal of Life Cycle Assessment, 2018, 23, 1297-1314.	2.2	19

HARRY AIKING

#	Article	IF	CITATIONS
37	Favoring plant instead of animal protein sources: Legitimation by authority, morality, rationality and story logic. Food Quality and Preference, 2021, 88, 104098.	2.3	19
38	Considering how farm animal welfare concerns may contribute to more sustainable diets. Appetite, 2022, 168, 105786.	1.8	19
39	Integrated environmental index for application in land-use zoning. Environmental Management, 1995, 19, 457-467.	1.2	14
40	Protein and sustainability – the potential of insects. Journal of Insects As Food and Feed, 2019, 5, 3-7.	2.1	11
41	Exploring food consumers' motivations to fight both climate change and biodiversity loss: Combining insights from behavior theory and Eurobarometer data. Food Quality and Preference, 2021, 94, 104304.	2.3	10
42	The occurrence of polyphosphates inCandida utilisNCYC 321, grown in chemostat cultures under conditions of potassium- and glucose-limitation. FEMS Microbiology Letters, 1977, 1, 251-254.	0.7	9
43	Climate change and species decline: Distinct sources of European consumer concern supporting more sustainable diets. Ecological Economics, 2021, 188, 107141.	2.9	9
44	Exploring the relative importance of "Reward―and "Reflection―in food orientations: Relevance for healthier and more sustainable diets. Food Quality and Preference, 2018, 64, 126-130.	2.3	8
45	The influence of different carbon sources and medium osmolarity on the potassium requirements of Candida utilis NCYC 321, growing in continuous culture. Archives of Microbiology, 1977, 115, 79-84.	1.0	6
46	How meat reduction differs from other personal climate actions: Distinct concerns and cultural barriers among EU consumers. Food Quality and Preference, 2022, 101, 104646.	2.3	6
47	Exposure to polycyclic aromatic hydrocarbons in occupational versus urban environmental air. International Archives of Occupational and Environmental Health, 1998, 71, 533-536.	1.1	4
48	Soyfoods, glycemic control and diabetes. Nutrition Clinique Et Metabolisme, 2020, 34, 141-148.	0.2	4
49	Limiting vs. diversifying patterns of recommendations for key protein sources emerging: a study on national food guides worldwide from a health and sustainability perspective. British Food Journal, 2021, 123, 2414-2429.	1.6	2
50	Environmental degradation—An undesirable output of the food system. , 2019, , 123-138.		1
51	Environmental Sustainability. , 2006, , 23-50.		1