Paula I Watnick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6785409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Interplay of Sex Steroids, the Immune Response, and the Intestinal Microbiota. Trends in Microbiology, 2021, 29, 849-859.	7.7	23
2	Microbiota-derived acetate activates intestinal innate immunity via the Tip60 histone acetyltransferase complex. Immunity, 2021, 54, 1683-1697.e3.	14.3	40
3	The Short-Chain Fatty Acids Propionate and Butyrate Augment Adherent-Invasive Escherichia coli Virulence but Repress Inflammation in a Human Intestinal Enteroid Model of Infection. Microbiology Spectrum, 2021, 9, e0136921.	3.0	21
4	Microbial Control of Intestinal Homeostasis via Enteroendocrine Cell Innate Immune Signaling. Trends in Microbiology, 2020, 28, 141-149.	7.7	24
5	Vibrio cholerae Sheds Its Coat to Make Itself Comfortable in the Gut. Cell Host and Microbe, 2020, 27, 161-163.	11.0	0
6	Methionine Availability in the Arthropod Intestine Is Elucidated through Identification of Vibrio cholerae Methionine Acquisition Systems. Applied and Environmental Microbiology, 2020, 86, .	3.1	4
7	A Self-Assembling Whole-Cell Vaccine Antigen Presentation Platform. Journal of Bacteriology, 2018, 200, .	2.2	3
8	Activation of Vibrio cholerae quorum sensing promotes survival of an arthropod host. Nature Microbiology, 2018, 3, 243-252.	13.3	46
9	Sublingual Adjuvant Delivery by a Live Attenuated Vibrio cholerae-Based Antigen Presentation Platform. MSphere, 2018, 3, .	2.9	1
10	A high-throughput, whole cell assay to identify compounds active against carbapenem-resistant Klebsiella pneumoniae. PLoS ONE, 2018, 13, e0209389.	2.5	6
11	Removal of a Membrane Anchor Reveals the Opposing Regulatory Functions of Vibrio cholerae Glucose-Specific Enzyme IIA in Biofilms and the Mammalian Intestine. MBio, 2018, 9, .	4.1	6
12	The Drosophila Immune Deficiency Pathway Modulates Enteroendocrine Function and Host Metabolism. Cell Metabolism, 2018, 28, 449-462.e5.	16.2	143
13	Vibrio cholerae ensures function of host proteins required for virulence through consumption of luminal methionine sulfoxide. PLoS Pathogens, 2017, 13, e1006428.	4.7	19
14	Regulation of CsrB/C sRNA decay by EIIA ^{Glc} of the phosphoenolpyruvate: carbohydrate phosphotransferase system. Molecular Microbiology, 2016, 99, 627-639.	2.5	62
15	The interplay between intestinal bacteria and host metabolism in health and disease: lessons from <i>Drosophila melanogaster</i> . DMM Disease Models and Mechanisms, 2016, 9, 271-281.	2.4	84
16	In situ proteolysis of the <i>Vibrio cholerae</i> matrix protein RbmA promotes biofilm recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10491-10496.	7.1	48
17	The Acetate Switch of an Intestinal Pathogen Disrupts Host Insulin Signaling and Lipid Metabolism. Cell Host and Microbe, 2014, 16, 592-604.	11.0	92
18	The Transcription Factor Mlc Promotes Vibrio cholerae Biofilm Formation through Repression of Phosphotransferase System Components. Journal of Bacteriology, 2014, 196, 2423-2430.	2.2	13

PAULA I WATNICK

#	Article	IF	CITATIONS
19	Cholera Toxin Disrupts Barrier Function by Inhibiting Exocyst-Mediated Trafficking of Host Proteins to Intestinal Cell Junctions. Cell Host and Microbe, 2013, 14, 294-305.	11.0	82
20	Mannitol and the Mannitol-Specific Enzyme IIB Subunit Activate Vibrio cholerae Biofilm Formation. Applied and Environmental Microbiology, 2013, 79, 4675-4683.	3.1	39
21	Mutations in the IMD Pathway and Mustard Counter Vibrio cholerae Suppression of Intestinal Stem Cell Division in <i>Drosophila</i> . MBio, 2013, 4, e00337-13.	4.1	38
22	Glucose-Specific Enzyme IIA Has Unique Binding Partners in The Vibrio cholerae Biofilm. MBio, 2012, 3, e00228-12.	4.1	36
23	The Bacterial Biofilm Matrix as a Platform for Protein Delivery. MBio, 2012, 3, e00127-12.	4.1	17
24	The <i>Drosophila</i> Protein Mustard Tailors the Innate Immune Response Activated by the Immune Deficiency Pathway. Journal of Immunology, 2012, 188, 3993-4000.	0.8	32
25	A High-Throughput Screen Identifies a New Natural Product with Broad-Spectrum Antibacterial Activity. PLoS ONE, 2012, 7, e31307.	2.5	35
26	A Communal Bacterial Adhesin Anchors Biofilm and Bystander Cells to Surfaces. PLoS Pathogens, 2011, 7, e1002210.	4.7	129
27	Spatially selective colonization of the arthropod intestine through activation of <i>Vibrio cholerae</i> biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19737-19742.	7.1	67
28	<i>Vibrio cholerae</i> Phosphoenolpyruvate Phosphotransferase System Control of Carbohydrate Transport, Biofilm Formation, and Colonization of the Germfree Mouse Intestine. Infection and Immunity, 2010, 78, 1482-1494.	2.2	72
29	The Phosphoenolpyruvate Phosphotransferase System Regulates <i>Vibrio cholerae</i> Biofilm Formation through Multiple Independent Pathways. Journal of Bacteriology, 2010, 192, 3055-3067.	2.2	86
30	Genetic analysis of <i>Drosophila melanogaster</i> susceptibility to intestinal <i>Vibrio cholerae</i> infection. Cellular Microbiology, 2009, 11, 461-474.	2.1	45
31	Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms. Microbiology and Molecular Biology Reviews, 2009, 73, 310-347.	6.6	809
32	Genetic Analysis of <i>Vibrio cholerae</i> Monolayer Formation Reveals a Key Role for ΔÎ in the Transition to Permanent Attachment. Journal of Bacteriology, 2008, 190, 8185-8196.	2.2	45
33	A Novel Role for Enzyme I of the <i>Vibrio cholerae</i> Phosphoenolpyruvate Phosphotransferase System in Regulation of Growth in a Biofilm. Journal of Bacteriology, 2008, 190, 311-320.	2.2	76
34	The Vibrio cholerae biofilm: A target for novel therapies to prevent and treat cholera. Drug Discovery Today Disease Mechanisms, 2006, 3, 261-266.	0.8	8
35	Identification of novel stageâ€specific genetic requirements through whole genome transcription profiling of <i>Vibrio cholerae</i> biofilm development. Molecular Microbiology, 2005, 57, 1623-1635.	2.5	123
36	Vibrio cholerae Infection of Drosophila melanogaster Mimics the Human Disease Cholera. PLoS Pathogens, 2005, 1, e8.	4.7	99

PAULA I WATNICK

#	Article	IF	CITATIONS
37	NspS, a Predicted Polyamine Sensor, Mediates Activation of Vibrio cholerae Biofilm Formation by Norspermidine. Journal of Bacteriology, 2005, 187, 7434-7443.	2.2	166
38	Role for Glycine Betaine Transport in Vibrio cholerae Osmoadaptation and Biofilm Formation within Microbial Communities. Applied and Environmental Microbiology, 2005, 71, 3840-3847.	3.1	73
39	Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development. Molecular Microbiology, 2004, 52, 573-587.	2.5	117
40	Identification and Characterization of a Vibrio cholerae Gene, mbaA , Involved in Maintenance of Biofilm Architecture. Journal of Bacteriology, 2003, 185, 1384-1390.	2.2	137
41	Environmental Determinants of Vibrio cholerae Biofilm Development. Applied and Environmental Microbiology, 2003, 69, 5079-5088.	3.1	135
42	The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14357-14362.	7.1	119
43	Vibrio cholerae CytR is a repressor of biofilm development. Molecular Microbiology, 2002, 45, 471-483.	2.5	142
44	The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in <i>Vibrio cholerae</i> O139. Molecular Microbiology, 2001, 39, 223-235.	2.5	274
45	Steps in the development of a Vibrio cholerae El Tor biofilm. Molecular Microbiology, 1999, 34, 586-595.	2.5	570