Xin Yang

List of Publications by Citations

Source: https://exaly.com/author-pdf/6785051/xin-yang-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

138
papers5,920
citations43
h-index70
g-index151
ext. papers6,843
ext. citations7.7
avg, IF5.47
L-index

#	Paper	IF	Citations
138	Synthesis of the H-cluster framework of iron-only hydrogenase. <i>Nature</i> , 2005 , 433, 610-3	50.4	467
137	Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. <i>New Phytologist</i> , 2011 , 189, 1040-1050	9.8	279
136	Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. <i>Science</i> , 2018 , 361, 278-281	33.3	265
135	Structure of the $Na(x)Cl(x+1)$ (-) ($x=1-4$) clusters via ab initio genetic algorithm and photoelectron spectroscopy. <i>Journal of Chemical Physics</i> , 2004 , 121, 5709-19	3.9	247
134	Bulk-like features in the photoemission spectra of hydrated doubly charged anion clusters. <i>Science</i> , 2001 , 294, 1322-5	33.3	171
133	Characteristics and ship traffic source identification of air pollutants in China's largest port. <i>Atmospheric Environment</i> , 2013 , 64, 277-286	5.3	144
132	Spatial and Seasonal Dynamics of Ship Emissions over the Yangtze River Delta and East China Sea and Their Potential Environmental Influence. <i>Environmental Science & Environmental Science & Environm</i>	10.3	129
131	Direct experimental observation of the low ionization potentials of guanine in free oligonucleotides by using photoelectron spectroscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 17588-92	11.5	124
130	Source apportionment of lead-containing aerosol particles in Shanghai using single particle mass spectrometry. <i>Chemosphere</i> , 2009 , 74, 501-7	8.4	104
129	Molecular characterization of organosulfates in organic aerosols from Shanghai and Los Angeles urban areas by nanospray-desorption electrospray ionization high-resolution mass spectrometry. <i>Environmental Science & Description (Lambia)</i> 2014, 48, 10993-1001	10.3	102
128	Single particle mass spectrometry of oxalic acid in ambient aerosols in Shanghai: Mixing state and formation mechanism. <i>Atmospheric Environment</i> , 2009 , 43, 3876-3882	5.3	91
127	Conducting polymers in environmental analysis. <i>TrAC - Trends in Analytical Chemistry</i> , 2012 , 39, 163-179	14.6	90
126	Shipping emissions and their impacts on air quality in China. <i>Science of the Total Environment</i> , 2017 , 581-582, 186-198	10.2	89
125	Important role of ammonia on haze formation in Shanghai. Environmental Research Letters, 2011, 6, 024	061.9	86
124	Physical characterization of aerosol particles during the Chinese New Year firework events. <i>Atmospheric Environment</i> , 2010 , 44, 5191-5198	5.3	85
123	Evidence for high molecular weight nitrogen-containing organic salts in urban aerosols. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	79
122	Particulate nitrate formation in a highly polluted urban area: a case study by single-particle mass spectrometry in Shanghai. <i>Environmental Science & Environmental Science &</i>	10.3	79

(2010-2017)

121	Time-Resolved Online Measurements and Numerical Simulation in Shanghai. <i>Environmental Science & Eamp; Technology</i> , 2017 , 51, 202-211	10.3	76	
120	Hygroscopicity of Inorganic Aerosols: Size and Relative Humidity Effects on the Growth Factor. <i>Aerosol and Air Quality Research</i> , 2010 , 10, 255-264	4.6	76	
119	Airborne submicron particulate (PM1) pollution in Shanghai, China: chemical variability, formation/dissociation of associated semi-volatile components and the impacts on visibility. <i>Science of the Total Environment</i> , 2014 , 473-474, 199-206	10.2	73	•
118	Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: observations at a rural site in eastern Yangtze River Delta of China. <i>Science of the Total Environment</i> , 2016 , 571, 1454-66	10.2	72	
117	Photodetachment of Hydrated Sulfate Doubly Charged Anions: SO42-(H2O)n (n = 4 $\frac{1}{2}$ 0) $\frac{1}{2}$ 0 Journal of Physical Chemistry A, 2002 , 106, 7607-7616	2.8	69	
116	Photodetachment and theoretical study of free and water-solvated nitrate anions, NO3(H2O)n (n=0B). <i>Journal of Chemical Physics</i> , 2002 , 116, 561-570	3.9	69	
115	Probing solution-phase species and chemistry in the gas phase. <i>International Reviews in Physical Chemistry</i> , 2002 , 21, 473-498	7	67	
114	Hygroscopicity and evaporation of ammonium chloride and ammonium nitrate: Relative humidity and size effects on the growth factor. <i>Atmospheric Environment</i> , 2011 , 45, 2349-2355	5.3	66	
113	Probing the intrinsic electronic structure of the cubane [4Fe-4S] cluster: nature's favorite cluster for electron transfer and storage. <i>Journal of the American Chemical Society</i> , 2003 , 125, 14072-81	16.4	63	
112	Evolution of the mixing state of fine aerosols during haze events in Shanghai. <i>Atmospheric Research</i> , 2012 , 104-105, 193-201	5.4	62	
111	Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 5399-5411	6.8	58	
110	Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe3O4-chitosan. <i>Carbohydrate Polymers</i> , 2016 , 137, 75-81	10.3	56	
109	Size distribution of particle-phase sugar and nitrophenol tracers during severe urban haze episodes in Shanghai. <i>Atmospheric Environment</i> , 2016 , 145, 115-127	5.3	54	
108	Gold dichloride and gold dibromide with gold atoms in three different oxidation states. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 311-4	16.4	54	
107	Bulk versus interfacial aqueous solvation of dicarboxylate dianions. <i>Journal of the American Chemical Society</i> , 2004 , 126, 11691-8	16.4	53	
106	Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign. <i>Atmospheric Environment</i> , 2013 , 64, 263-269	5.3	52	
105	Photoelectron Spectroscopy of Free Polyoxoanions Mo6O192- and W6O192- in the Gas Phase. Journal of Physical Chemistry A, 2004 , 108, 10089-10093	2.8	50	
104	Insights into Ammonium Particle-to-Gas Conversion: Non-sulfate Ammonium Coupling with Nitrate and Chloride. <i>Aerosol and Air Quality Research</i> , 2010 , 10, 589-595	4.6	49	

103	Photodetachment of F(H2O)n (n=14): Observation of charge-transfer states [F(H2O)n+] and the transition state of F+H2O hydrogen abstraction reaction. <i>Journal of Chemical Physics</i> , 2001 , 115, 2889-2	892	49
102	Ozone and daily mortality rate in 21 cities of East Asia: how does season modify the association?. <i>American Journal of Epidemiology</i> , 2014 , 180, 729-36	3.8	47
101	Single particle analysis of amines in ambient aerosol in Shanghai. <i>Environmental Chemistry</i> , 2012 , 9, 202	3.2	47
100	On the electronic structures of gaseous transition metal halide complexes, FeX4[and MX3] (M=Mn, Fe, Co, Ni, X=Cl, Br), using photoelectron spectroscopy and density functional calculations. <i>Journal of Chemical Physics</i> , 2003 , 119, 8311-8320	3.9	47
99	The effects of firework regulation on air quality and public health during the Chinese Spring Festival from 2013 to 2017 in a Chinese megacity. <i>Environment International</i> , 2019 , 126, 96-106	12.9	47
98	Direct measurement of the hydrogen-bonding effect on the intrinsic redox potentials of [4Fe-4S] cubane complexes. <i>Journal of the American Chemical Society</i> , 2004 , 126, 15790-4	16.4	46
97	Solvation of the Azide Anion (N3-) in Water Clusters and Aqueous Interfaces: A Combined Investigation by Photoelectron Spectroscopy, Density Functional Calculations, and Molecular Dynamics Simulations <i>Journal of Physical Chemistry A</i> , 2004 , 108, 7820-7826	2.8	44
96	Size distributions of polycyclic aromatic hydrocarbons in urban atmosphere: sorption mechanism and source contributions to respiratory deposition. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2971-2	983 983	43
95	Reactions of Atmospheric Particulate Stabilized Criegee Intermediates Lead to High-Molecular-Weight Aerosol Components. <i>Environmental Science & Environmental Science & Envir</i>	16 ^{0.3}	43
94	Photodetachment of zwitterions: probing intramolecular coulomb repulsion and attraction in the gas phase using pyridinium dicarboxylate anions. <i>Journal of the American Chemical Society</i> , 2003 , 125, 296-304	16.4	41
93	Effects of amines on particle growth observed in new particle formation events. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 324-335	4.4	41
92	Observations of linear dependence between sulfate and nitrate in atmospheric particles. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 341-361	4.4	40
91	Size-resolved hygroscopicity of submicrometer urban aerosols in Shanghai during wintertime. <i>Atmospheric Research</i> , 2011 , 99, 353-364	5.4	40
90	Solvent-mediated folding of a doubly charged anion. <i>Journal of the American Chemical Society</i> , 2004 , 126, 876-83	16.4	39
89	Experimental and Theoretical Investigations of the Stability, Energetics, and Structures of H2PO4-, H2P2O72-, and H3P3O102-in the Gas Phase. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 10468-10474	2.8	39
88	Size-resolved effective density of urban aerosols in Shanghai. <i>Atmospheric Environment</i> , 2015 , 100, 133-	1,40	38
87	Photodetachment of hydrated oxalate dianions in the gas phase, C2O42(H2O)n (n=3월0): From solvated clusters to nanodroplet. <i>Journal of Chemical Physics</i> , 2003 , 119, 3631-3640	3.9	37
86	Multi-pollutant emissions from the burning of major agricultural residues in China and the related health-economic effects. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 4957-4988	6.8	34

(2009-2016)

85	Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai. <i>Atmospheric Environment</i> , 2016 , 145, 1-9	5.3	34
84	Photochemical Aging of Guaiacol by Fe(III)-Oxalate Complexes in Atmospheric Aqueous Phase. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	34
83	Online single particle measurement of fireworks pollution during Chinese New Year in Nanning. Journal of Environmental Sciences, 2017 , 53, 184-195	6.4	32
82	Real-World Emission Factors of Gaseous and Particulate Pollutants from Marine Fishing Boats and Their Total Emissions in China. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 4910-4919	10.3	32
81	High Time- and Size-Resolved Measurements of PM and Chemical Composition from Coal Combustion: Implications for the EC Formation Process. <i>Environmental Science & Environmental Science & Environment</i>	10.3	32
80	Changes in the SO Level and PM Components in Shanghai Driven by Implementing the Ship Emission Control Policy. <i>Environmental Science & Emp; Technology</i> , 2019 , 53, 11580-11587	10.3	31
79	Photoinduced Reactions in the IonMolecule Complexes Mg+XCH3 (X = F, Cl). <i>Journal of Physical Chemistry A</i> , 2000 , 104, 8496-8504	2.8	31
78	Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity. <i>Atmospheric Environment</i> , 2016 , 140, 94-105	5.3	30
77	Online hygroscopicity and chemical measurement of urban aerosol in Shanghai, China. <i>Atmospheric Environment</i> , 2014 , 95, 318-326	5.3	28
76	Size-resolved chemical composition, effective density, and optical properties of biomass burning particles. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 7481-7493	6.8	28
75	Probing the Electronic Structure of the Di-Iron Subsite of [Fe]-Hydrogenase: A Photoelectron Spectroscopic Study of Fe(I)He(I) Model Complexes. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 4612-461	18.8	28
74	Nitrite-Mediated Photooxidation of Vanillin in the Atmospheric Aqueous Phase. <i>Environmental Science & Environmental Science &</i>	10.3	28
73	Long-range and regional transported size-resolved atmospheric aerosols during summertime in urban Shanghai. <i>Science of the Total Environment</i> , 2017 , 583, 334-343	10.2	27
72	Chemistry-triggered events of PM explosive growth during late autumn and winter in Shanghai, China. <i>Environmental Pollution</i> , 2019 , 254, 112864	9.3	27
71	Evolution of biomass burning smoke particles in the dark. <i>Atmospheric Environment</i> , 2015 , 120, 244-252	5.3	27
70	On the Electronic Structure of [1Fe] FeB Complexes from Anionic Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2003, 107, 1703-1709	2.8	27
69	Collision-induced dissociation and photodetachment of singly and doubly charged anionic polynuclear transition metal carbonyl clusters: Ru3Co(CO)13🏚Ru6C(CO)162Þand Ru6(CO)182Ð Journal of Chemical Physics, 2002 , 116, 6560-6566	3.9	26
68	Direct quantification of organic acids in aerosols by desorption electrospray ionization mass spectrometry. <i>Atmospheric Environment</i> , 2009 , 43, 2717-2720	5.3	25

67	Interactions between Heterogeneous Uptake and Adsorption of Sulfur Dioxide and Acetaldehyde on Hematite. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 4001-8	2.8	24
66	Characteristics of atmospheric ammonia and its relationship with vehicle emissions in a megacity in China. <i>Atmospheric Environment</i> , 2018 , 182, 97-104	5.3	24
65	Uncertainty in Predicting CCN Activity of Aged and Primary Aerosols. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 11,723-11,736	4.4	24
64	Rapid analysis of SVOC in aerosols by desorption electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2008, 19, 450-4	3.5	24
63	Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 7277-7290	6.8	23
62	Direct quantification of PAHs in biomass burning aerosols by desorption electrospray ionization mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2009 , 281, 31-36	1.9	23
61	Mechanistic Insight into the Symmetric Fission of [4Fe\(\Pi S \)] Analogue Complexes and Implications for Cluster Conversions in IronBulfur Proteins. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 6750-6757	2.8	23
60	Photoelectron spectroscopy of the doubly-charged anions [MIVO(mnt)2]2- (M = Mo, W; mnt = S2C2(CN)2(2-): access to the ground and excited states of the [MVO(mnt)2]- anion. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5119-29	16.4	23
59	Measuring and Modeling Aerosol: Relationship with Haze Events in Shanghai, China. <i>Aerosol and Air Quality Research</i> , 2014 , 14, 783-792	4.6	23
58	Trends in heterogeneous aqueous reaction in continuous haze episodes in suburban Shanghai: An in-depth case study. <i>Science of the Total Environment</i> , 2018 , 634, 1192-1204	10.2	22
57	Particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids during the haze period in the megacity of Shanghai. <i>Environmental Pollution</i> , 2018 , 234, 9-19	9.3	22
56	Monitoring optical properties of aerosols with cavity ring-down spectroscopy. <i>Journal of Aerosol Science</i> , 2011 , 42, 277-284	4.3	22
55	Photodissociation spectroscopy of Mg+\$\tilde{1}\$6H5X (X=H, F, Cl, Br). Journal of Chemical Physics, 2000 , 112, 10236-10246	3.9	22
54	Emission factors and environmental implication of organic pollutants in PM emitted from various vessels in China. <i>Atmospheric Environment</i> , 2019 , 200, 302-311	5.3	22
53	Different formation mechanisms of PAH during wood and coal combustion under different temperatures. <i>Atmospheric Environment</i> , 2020 , 222, 117084	5.3	21
52	Size distribution of particle-associated polybrominated diphenyl ethers (PBDEs) and their implications for health. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 1025-1037	4	21
51	Interior and interfacial aqueous solvation of benzene dicarboxylate dianions and their methylated analogues: A combined molecular dynamics and photoelectron spectroscopy study. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 5042-9	2.8	20
50	Probing the electronic structure of [MoOS(4)](-) centers using anionic photoelectron spectroscopy. Journal of the American Chemical Society, 2002 , 124, 10182-91	16.4	20

(2019-2003)

49	Collision-induced symmetric fission of doubly-charged cubelike [Fe4S4X4]2lælusters. <i>International Journal of Mass Spectrometry</i> , 2003 , 228, 797-805	1.9	19
48	Coulomb- and antiferromagnetic-induced fission in doubly charged cubelike fe-s clusters. <i>Physical Review Letters</i> , 2002 , 89, 163401	7.4	19
47	Photo-induced reactions in mass-selected complexes Mg+(FCH3)n, n=14. <i>Journal of Chemical Physics</i> , 2000 , 113, 3111-3120	3.9	19
46	Seasonal contributions to size-resolved n-alkanes (C-C) in the Shanghai atmosphere from regional anthropogenic activities and terrestrial plant waxes. <i>Science of the Total Environment</i> , 2017 , 579, 1918-	1928	17
45	Photofragmentation studies of small selenium cluster cations Sen+ (n=3 B). <i>Journal of Chemical Physics</i> , 1999 , 111, 7837-7843	3.9	17
44	Insights into the formation of secondary organic carbon in the summertime in urban Shanghai. Journal of Environmental Sciences, 2018, 72, 118-132	6.4	15
43	A multifunctional HTDMA system with a robust temperature control. <i>Advances in Atmospheric Sciences</i> , 2009 , 26, 1235-1240	2.9	15
42	Terminal ligand influence on the electronic structure and intrinsic redox properties of the [Fe4S4]2+ cubane clusters. <i>Inorganic Chemistry</i> , 2004 , 43, 3647-55	5.1	15
41	Characterization of typical metal particles during haze episodes in Shanghai, China. <i>Chemosphere</i> , 2017 , 181, 259-269	8.4	14
40	Mass resolved photoionization/fragmentation studies of Cr(CO)6 at photon energies of ~8월0 eV. Journal of Chemical Physics, 1997 , 107, 4911-4918	3.9	14
39	Probing the electronic structure of [2Fe-2S] clusters with three coordinate iron sites by use of photoelectron spectroscopy. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 1815-20	2.8	14
38	Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China. <i>Nature Communications</i> , 2021 , 12, 3159	17.4	14
37	Temporal variations in the hygroscopicity and mixing state of black carbon aerosols in a polluted megacity area. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 15201-15218	6.8	14
36	The effects of acetaldehyde, glyoxal and acetic acid on the heterogeneous reaction of nitrogen dioxide on gamma-alumina. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 9367-76	3.6	13
35	In search of covalently bound tetra- and penta-oxygen species: a photoelectron spectroscopic and Ab initio investigation of MO4- and MO5- (M = Li, Na, K, Cs). <i>Journal of the American Chemical Society</i> , 2002 , 124, 6742-50	16.4	13
34	A selective photo-induced reaction in the ion-molecule complex Mg+ E CH3. <i>Chemical Physics Letters</i> , 2000 , 322, 491-495	2.5	13
33	Nitrogen-containing secondary organic aerosol formation by acrolein reaction with ammonia/ammonium. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 1343-1356	6.8	13
32	Magnetic metal-organic framework nanocomposites for enrichment and direct detection of environmental pollutants by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. <i>Talanta</i> , 2019 , 194, 329-335	6.2	13

31	Single particle analysis of ambient aerosols in Shanghai during the World Exposition, 2010: two case studies. <i>Frontiers of Environmental Science and Engineering in China</i> , 2011 , 5, 391-401		12
30	The absolute cross sections of photoabsorption, photodissociation, and photoionization of the group VIB metal hexacarbonyls at 300¶600 □ <i>Journal of Chemical Physics</i> , 1997 , 106, 9474-9482	3.9	12
29	Effects of cleaner ship fuels on air quality and implications for future policy: A case study of Chongming Ecological Island in China. <i>Journal of Cleaner Production</i> , 2020 , 267, 122088	10.3	12
28	Effect of Formaldehyde on the Heterogeneous Reaction of Nitrogen Dioxide on EAlumina. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 9317-24	2.8	11
27	Size-segregated characteristics of organic carbon[[OC], elemental carbon[[EC]) and organic matter in particulate matter[[PM]) emitted from different types of ships in China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1549-1564	6.8	11
26	Sequential oxidation of the cubane [4Fe4S] cluster from [4Fe4S](-) to [4Fe4S](3+) in Fe(4)S(4)L(n)(-) complexes. <i>Journal of the American Chemical Society</i> , 2004 , 126, 8413-20	16.4	11
25	ROS-generation potential of Humic-like substances (HULIS) in ambient PM in urban Shanghai: Association with HULIS concentration and light absorbance. <i>Chemosphere</i> , 2020 , 256, 127050	8.4	10
24	Thermal desorption single particle mass spectrometry of ambient aerosol in Shanghai. <i>Atmospheric Environment</i> , 2015 , 123, 407-414	5.3	10
23	Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China. <i>Journal of Environmental Sciences</i> , 2014 , 26, 2412-22	6.4	8
22	Hygroscopicity and optical properties of alkylaminium sulfates. <i>Journal of Environmental Sciences</i> , 2014 , 26, 37-43	6.4	8
21	Resonant two-photon ionization spectra of van der Waals complexes p, m, o-C6H4F2?NH3(ND3). Journal of Chemical Physics, 1999 , 111, 134-139	3.9	8
20	Impact of adsorbed nitrate on the heterogeneous conversion of SO on FeO in the absence and presence of simulated solar irradiation. <i>Science of the Total Environment</i> , 2019 , 649, 1393-1402	10.2	8
19	Impacts of Chemical Degradation on the Global Budget of Atmospheric Levoglucosan and Its Use As a Biomass Burning Tracer. <i>Environmental Science & Environmental Science & Env</i>	10.3	8
18	Increasing surface ozone and enhanced secondary organic carbon formation at a city junction site: An epitome of the Yangtze River Delta, China (2014-2017). <i>Environmental Pollution</i> , 2020 , 265, 114847	9.3	7
17	A simplified electrospray ionization source based on electrostatic field induction for mass spectrometric analysis of droplet samples. <i>Analyst, The</i> , 2012 , 137, 5743-8	5	7
16	Direct links between hygroscopicity and mixing state of ambient aerosols: estimating particle hygroscopicity from their single-particle mass spectra. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 627	3-6290	o ⁶
15	Source assessment of atmospheric fine particulate matter in a Chinese megacity: Insights from long-term, high-time resolution chemical composition measurements from Shanghai flagship monitoring supersite. <i>Chemosphere</i> , 2020 , 251, 126598	8.4	6
14	Online single particle analysis of chemical composition and mixing state of crop straw burning particles: from laboratory study to field measurement. <i>Frontiers of Environmental Science and Engineering</i> , 2016 , 10, 244-252	5.8	6

LIST OF PUBLICATIONS

13	gamma-alumina in the absence and presence of simulated solar irradiation. <i>Atmospheric</i> Environment, 2018 , 187, 282-291	5.3	6
12	Chemical characterization and source identification of submicron aerosols from a year-long real-time observation at a rural site of Shanghai using an Aerosol Chemical Speciation Monitor. <i>Atmospheric Research</i> , 2020 , 246, 105154	5.4	6
11	Size-Resolved Mixing States and Sources of Amine-Containing Particles in the East China Sea. Journal of Geophysical Research D: Atmospheres, 2020 , 125, e2020JD033162	4.4	6
10	Air quality in the middle and lower reaches of the Yangtze River channel: a cruise campaign. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 14445-14464	6.8	6
9	Dynamic Ni/V Ratio in the Ship-Emitted Particles Driven by Multiphase Fuel Oil Regulations in Coastal China. <i>Environmental Science & Environmental Sc</i>	10.3	4
8	Particle-Phase Photoreactions of HULIS and TMIs Establish a Strong Source of HO and Particulate Sulfate in the Winter North China Plain. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	4
7	Probing the Electronic Structure of Fe?S Clusters: Ubiquitous Electron Transfer Centers in Metalloproteins Using Anion Photoelectron Spectroscopy in the Gas Phase 2006 , 63-117		3
6	Complexation of Fe(III)/Catechols in atmospheric aqueous phase and the consequent cytotoxicity assessment in human bronchial epithelial cells (BEAS-2B). <i>Ecotoxicology and Environmental Safety</i> , 2020 , 202, 110898	7	2
5	Real-time, single-particle measurements of ambient aerosols in Shanghai. <i>Frontiers of Chemistry in China: Selected Publications From Chinese Universities</i> , 2010 , 5, 331-341		2
4	Novel cationic selenium-cluster nitride species [SenN]+(n = 1-11) formed by laser ablation of a Se target in the presence of N2. <i>Chemistry - A European Journal</i> , 2001 , 7, 652-6	4.8	2
3	Measurements of nonvolatile size distribution and its link to traffic soot in urban Shanghai. <i>Science of the Total Environment</i> , 2018 , 615, 452-461	10.2	2
2	Size-fractionated water-soluble ions during autumn and winter: Insights into volatile ammonium formation mechanisms in Shanghai, a megacity of China. <i>Atmospheric Environment: X</i> , 2019 , 2, 100011	2.8	1
1	Production Flux and Chemical Characteristics of Spray Aerosol Generated From Raindrop Impact on Seawater and Soil. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD032052	4.4	О