Yoshio Hirano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6785036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Twenty-Four Month Results of Intravitreal Ranibizumab for Macular Edema after Branch Retinal Vein Occlusion: Visual Outcomes and Resolution of Macular Edema. Seminars in Ophthalmology, 2021, 36, 482-489.	0.8	5
2	Remote screening of diabetic retinopathy using ultra-widefield retinal imaging. Diabetes Research and Clinical Practice, 2021, 177, 108902.	1.1	5
3	Multimodal Imaging of Microvascular Abnormalities in Retinal Vein Occlusion. Journal of Clinical Medicine, 2021, 10, 405.	1.0	24
4	Background Factors Affecting Visual Acuity at Initial Visit in Eyes with Central Retinal Vein Occlusion: Multicenter Study in Japan. Journal of Clinical Medicine, 2021, 10, 5619.	1.0	0
5	Ultra-Widefield Swept-Source Optical Coherence Tomography Findings of Peripheral Retinal Degenerations and Breaks. Clinical Ophthalmology, 2021, Volume 15, 4739-4745.	0.9	8
6	Three-dimensional analysis of choroidal vessels in eyes with Vogt-Koyanagi-Harada disease before and after treatment. Canadian Journal of Ophthalmology, 2020, 55, 500-508.	0.4	1
7	Morphologic Classifications and Locations of Microaneurysms and Clinical Relevance in Branch Retinal Vein Occlusion. Clinical Ophthalmology, 2020, Volume 14, 1909-1919.	0.9	2
8	Macular hole and serous pigment epithelial detachment in bilateral acquired vitelliform lesions. American Journal of Ophthalmology Case Reports, 2020, 18, 100628.	0.4	1
9	Peripheral Microvascular Abnormalities Detected by Wide-Field Fluorescein Angiography in Eyes with Branch Retinal Vein Occlusion. Ophthalmic Research, 2019, 61, 107-114.	1.0	9
10	Fundus autofluorescence and retinal sensitivity in fellow eyes of age-related macular degeneration in Japan. PLoS ONE, 2019, 14, e0213161.	1.1	3
11	Collateral vessels on optical coherence tomography angiography in eyes with branch retinal vein occlusion. British Journal of Ophthalmology, 2019, 103, 1373-1379.	2.1	30
12	Multimodal Imaging in a Case of Idiopathic Neuroretinitis. Case Reports in Ophthalmology, 2019, 9, 487-492.	0.3	3
13	Structural and Functional Analyses of Retinal Ischemia in Eyes with Retinal Vein Occlusion: Relationship with Macular Edema or Microaneurysm Formation. Ophthalmic Research, 2019, 61, 218-225.	1.0	11
14	cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nature Medicine, 2018, 24, 50-61.	15.2	205
15	Six-month results of intravitreal ranibizumab for macular edema after branch retinal vein occlusion in a single-center prospective study: visual outcomes and microaneurysm formation. Clinical Ophthalmology, 2018, Volume 12, 1487-1494.	0.9	5
16	Flattening of retinal pigment epithelial detachments after pneumatic displacement of submacular hemorrhages secondary to age-related macular degeneration. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 1823-1829.	1.0	3
17	Wide-field fluorescein and indocyanine green angiography findings in the eyes with Vogt-Koyanagi-Harada disease. Journal of Ophthalmic Inflammation and Infection, 2017, 7, 16.	1.2	8
18	Retinal Hemodynamics Seen on Optical Coherence Tomography Angiography Before and After Treatment of Retinal Vein Occlusion. , 2016, 57, 5681.		60

Yoshio Hirano

#	Article	IF	CITATIONS
19	Microaneurysms cause refractory macular edema in branch retinal vein occlusion. Scientific Reports, 2016, 6, 29445.	1.6	35
20	Human lgG1 antibodies suppress angiogenesis in a target-independent manner. Signal Transduction and Targeted Therapy, 2016, 1, .	7.1	30
21	Intravenous immune globulin suppresses angiogenesis in mice and humans. Signal Transduction and Targeted Therapy, 2016, 1, .	7.1	23
22	Combination therapy with intravitreal tissue plasminogen activator and ranibizumab for subfoveal type 2 choroidal neovascularization. Japanese Journal of Ophthalmology, 2016, 60, 179-186.	0.9	6
23	Microvascular Abnormalities on Optical Coherence Tomography Angiography in Macular Edema Associated With Branch Retinal Vein Occlusion. American Journal of Ophthalmology, 2016, 161, 126-132.e1.	1.7	125
24	Indocyanine Green Angiography-Guided Focal Laser Photocoagulation for Diabetic Macular Edema. Ophthalmologica, 2015, 234, 139-150.	1.0	20
25	Short Pulse Laser Induces Less Inflammatory Cytokines in the Murine Retina after Laser Photocoagulation. Ophthalmic Research, 2015, 53, 65-73.	1.0	20
26	Prevention of increased abnormal fundus autofluorescence with blue light–filtering intraocular lenses. Journal of Cataract and Refractive Surgery, 2015, 41, 1855-1859.	0.7	14
27	Intravitreal Ranibizumab for Patients with Neovascular Age-Related Macular Degeneration with Good Baseline Visual Acuity. Ophthalmologica, 2015, 233, 27-34.	1.0	5
28	IL-18 is not therapeutic for neovascular age-related macular degeneration. Nature Medicine, 2014, 20, 1372-1375.	15.2	37
29	DICER1/ <i>Alu</i> RNA dysmetabolism induces Caspase-8–mediated cell death in age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16082-16087.	3.3	79
30	Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science, 2014, 346, 1000-1003.	6.0	189
31	Wide-Field Fundus Autofluorescence Imaging to Evaluate Retinal Function in Patients With Retinitis Pigmentosa. American Journal of Ophthalmology, 2014, 158, 1093-1098.e3.	1.7	54
32	Targeted Intraceptor Nanoparticle Therapy Reduces Angiogenesis and Fibrosis in Primate and Murine Macular Degeneration. ACS Nano, 2013, 7, 3264-3275.	7.3	83
33	TLR-Independent and P2X7-Dependent Signaling Mediate <i>Alu</i> RNA-Induced NLRP3 Inflammasome Activation in Geographic Atrophy. , 2013, 54, 7395.		138
34	Short-interfering RNAs Induce Retinal Degeneration via TLR3 and IRF3. Molecular Therapy, 2012, 20, 101-108.	3.7	86
35	ERK1/2 activation is a therapeutic target in age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13781-13786.	3.3	98
36	DICER1 Loss and Alu RNA Induce Age-Related Macular Degeneration via the NLRP3 Inflammasome and MyD88. Cell, 2012, 149, 847-859.	13.5	526

Yoshio Hirano

#	Article	IF	CITATIONS
37	Spatio-temporal understanding of the pathology of acute posterior multifocal placoid pigment epitheliopathy. Japanese Journal of Ophthalmology, 2012, 56, 371-374.	0.9	2
38	Outcomes and Complications of 25-Gauge Transconjunctival Sutureless Vitrectomy for Proliferative Diabetic Retinopathy. Ophthalmologica, 2011, 226, 76-80.	1.0	26
39	VISUAL OUTCOME AFTER INTRAVITREAL TRIAMCINOLONE ACETONIDE DEPENDS ON OPTICAL COHERENCE TOMOGRAPHIC PATTERNS IN PATIENTS WITH DIFFUSE DIABETIC MACULAR EDEMA. Retina, 2011, 31, 748-754.	1.0	57
40	DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature, 2011, 471, 325-330.	13.7	573
41	Pneumatic displacement of submacular hemorrhage with or without tissue plasminogen activator. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011, 249, 1153-1157.	1.0	48
42	Indocyanine green angiography-guided laser photocoagulation combined with sub-Tenon's capsule injection of triamcinolone acetonide for idiopathic macular telangiectasia. British Journal of Ophthalmology, 2010, 94, 600-605.	2.1	22
43	Suppression of ICAM-1 in Retinal and Choroidal Endothelial Cells by Plasmid Small-Interfering RNAs In Vivo. , 2010, 51, 508.		30
44	Intraocular pressure elevation following triamcinolone acetonide administration as related to administration routes. Japanese Journal of Ophthalmology, 2009, 53, 519-522.	0.9	32
45	Intraocular Pressure Elevation after Injection of Triamcinolone Acetonide: A Multicenter Retrospective Case-Control Study. American Journal of Ophthalmology, 2008, 145, 676-681.e1.	1.7	52
46	Comparative Study on Efficacy of a Combination Therapy of Triamcinolone Acetonide Administration with and without Vitrectomy for Macular Edema Associated with Branch Retinal Vein Occlusion. Ophthalmic Research, 2007, 39, 207-212.	1.0	11