
William H Swartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6784855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aura OMI observations of regional SO ₂ and NO ₂ pollution changes from 2005 to 2015. Atmospheric Chemistry and Physics, 2016, 16, 4605-4629.	1.9	521
2	A new stratospheric and tropospheric NO ₂ retrieval algorithm for nadir-viewing satellite instruments: applications to OMI. Atmospheric Measurement Techniques, 2013, 6, 2607-2626.	1.2	269
3	The version 3 OMI NO ₂ standard product. Atmospheric Measurement Techniques, 2017, 10, 3133-3149.	1.2	198
4	Evaluation of OMI operational standard NO ₂ column retrievals using in situ and surface-based NO ₂ observations. Atmospheric Chemistry and Physics, 2014, 14, 11587-11609.	1.9	182
5	Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments. Atmospheric Measurement Techniques, 2021, 14, 455-479.	1.2	89
6	Twilight observations suggest unknown sources of HOx. Geophysical Research Letters, 1999, 26, 1373-1376.	1.5	85
7	Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5670-5692.	1.2	72
8	A high-resolution and observationally constrained OMI NO ₂ satellite retrieval. Atmospheric Chemistry and Physics, 2017, 17, 11403-11421.	1.9	58
9	Photolysis frequency of NO2: Measurement and modeling during the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI). Journal of Geophysical Research, 2003, 108, .	3.3	52
10	International Photolysis Frequency Measurement and Model Intercomparison (IPMMI): Spectral actinic solar flux measurements and modeling. Journal of Geophysical Research, 2003, 108, .	3.3	47
11	Isolating the roles of different forcing agents in global stratospheric temperature changes using model integrations with incrementally added single forcings. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8067-8082.	1.2	38
12	Highâ€resolution NO ₂ observations from the Airborne Compact Atmospheric Mapper: Retrieval and validation. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1953-1970.	1.2	38
13	Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model. Atmospheric Chemistry and Physics, 2012, 12, 5937-5948.	1.9	37
14	Comparison of modeled and observed values of NO2and JNO2during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) mission. Journal of Geophysical Research, 1999, 104, 26687-26703.	3.3	36
15	Stereochemical probe for the mechanism of phosphorus-carbon bond cleavage catalyzed by the Bacillus cereus phosphonoacetaldehyde hydrolase. Journal of the American Chemical Society, 1992, 114, 7346-7354.	6.6	35
16	Measurements of trace gases in the tropical tropopause layer. Atmospheric Environment, 2007, 41, 7253-7261.	1.9	35
17	Photolysis frequency of O3to O(1D): Measurements and modeling during the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI). Journal of Geophysical Research, 2004, 109, .	3.3	33
18	Aerosol optical depth measurements by airborne sun photometer in SOLVE II: Comparisons to SAGE III, POAM III and airborne spectrometer measurements. Atmospheric Chemistry and Physics, 2005, 5, 1311-1339.	1.9	32

WILLIAM H SWARTZ

#	Article	IF	CITATIONS
19	Evidence for an intramolecular, stepwise reaction pathway for PEP phosphomutase catalyzed phosphorus-carbon bond formation. Journal of Organic Chemistry, 1991, 56, 7121-7130.	1.7	31
20	Assessment of NO ₂ observations during DISCOVER-AQ and KORUS-AQ field campaigns. Atmospheric Measurement Techniques, 2020, 13, 2523-2546.	1.2	31
21	Reconstruction of three-dimensional ozone fields using POAM III during SOLVE. Journal of Geophysical Research, 2002, 107, SOL 42-1.	3.3	29
22	Calculations of solar shortwave heating rates due to black carbon and ozone absorption using in situ measurements. Journal of Geophysical Research, 2008, 113, .	3.3	28
23	Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: comparison with coincident satellite and aircraft measurements. Atmospheric Chemistry and Physics, 2005, 5, 2035-2054.	1.9	22
24	Exploratory studies of .alphasilylamino- and .alphasilylamido-2,5-cyclohexadien-1-one SET photochemistry. Methodology for synthesis of functionalized hydroisoquinolines. Journal of Organic Chemistry, 1992, 57, 6037-6047.	1.7	21
25	RAVAN: CubeSat Demonstration for Multi-Point Earth Radiation Budget Measurements. Remote Sensing, 2019, 11, 796.	1.8	20
26	The use of NO ₂ absorption cross section temperature sensitivity to derive NO ₂ profile temperature and stratospheric–tropospheric column partitioning from visible direct-sun DOAS measurements. Atmospheric Measurement Techniques, 2014, 7, 4299-4316.	1.2	18
27	Photochemical ozone loss in the Arctic as determined by MSX/UVISI stellar occultation observations during the 1999/2000 winter. Journal of Geophysical Research, 2002, 107, SOL 39-1.	3.3	17
28	Heating rates and surface dimming due to black carbon aerosol absorption associated with a major U.S. city. Geophysical Research Letters, 2009, 36, .	1.5	17
29	Ozone destruction and production rates between spring and autumn in the Arctic stratosphere. Geophysical Research Letters, 2000, 27, 2605-2608.	1.5	16
30	A sensitivity study of photolysis rate coefficients during POLARIS. Journal of Geophysical Research, 1999, 104, 26725-26735.	3.3	14
31	Molecular velocity distributions and generalized scale invariance in the turbulent atmosphere. Faraday Discussions, 2005, 130, 181.	1.6	14
32	A Spectral Parameterization of Drag, Eddy Diffusion, and Wave Heating for a Three-Dimensional Flow Induced by Breaking Gravity Waves. Journals of the Atmospheric Sciences, 2010, 67, 2520-2536.	0.6	14
33	The RAVAN CubeSat mission: Advancing technologies for climate observation. , 2015, , .		13
34	The impact of current CH ₄ and N ₂ O atmospheric loss process uncertainties on calculated ozone abundances and trends. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5267-5293.	1.2	12
35	Intercomparison of total ozone observations at Fairbanks, Alaska, during POLARIS. Journal of Geophysical Research, 1999, 104, 26767-26778.	3.3	10
36	Intercomparison of MSX/UVISIâ€derived ozone and temperature profiles with groundâ€based, SAGE II, HALOE, and POAM III data. Journal of Geophysical Research, 2003, 108, .	3.3	9

WILLIAM H SWARTZ

#	Article	IF	CITATIONS
37	Ozone observations by the Gas and Aerosol Measurement Sensor during SOLVE II. Atmospheric Chemistry and Physics, 2006, 6, 2695-2709.	1.9	9
38	Comparison of high-latitude line-of-sight ozone column density with derived ozone fields and the effects of horizontal inhomogeneity. Atmospheric Chemistry and Physics, 2006, 6, 1843-1852.	1.9	7
39	Column ozone and aerosol optical properties retrieved from direct solar irradiance measurements during SOLVE II. Atmospheric Chemistry and Physics, 2005, 5, 611-622.	1.9	6
40	JNO2at high solar zenith angles in the lower stratosphere. Geophysical Research Letters, 2001, 28, 2405-2408.	1.5	5
41	Diagnosis of Middle-Atmosphere Climate Sensitivity by the Climate Feedback–Response Analysis Method. Journals of the Atmospheric Sciences, 2016, 73, 3-23.	0.6	4
42	Trutinor: A Conceptual Study for a Next-Generation Earth Radiant Energy Instrument. Remote Sensing, 2020, 12, 3281.	1.8	2
43	The power of inexpensive satellite constellations. , 2014, , .		1
44	Radiometer Assessment Using Vertically Aligned Nanotubes (RAVAN). , 2019, , .		1
45	CHAPS: a sustainable approach to targeted air pollution observation from small satellites. , 2021, , .		1
46	Carbon nanotube-based radiometers demonstrated on the RAVAN CubeSat mission. , 2019, , .		1
47	Geostationary Imaging Fabry-Perot Spectrometer (GIFS). , 2004, , .		0
48	Geostationary imaging Fabry-Perot spectrometer (GIFS): measurement of clouds and trace gases. Proceedings of SPIE, 2008, , .	0.8	0
49	The global assimilation of information for action (CAIA) initiative: understanding the impact of climate change on national security and public health. Proceedings of SPIE, 2012, , .	0.8	0
50	Applying the OMI NO2 Retrieval Algorithm to Estimate the Production Efficiency of Lightning NOx. , 2016, , .		0