Mark Kortschot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6784847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Temperature Fracture Resistance of Model Kraft Recovery Boiler Deposits. Materials, 2022, 15, 4759.	2.9	0
2	An energy-based model for the wear of unidirectional carbon fiber reinforced epoxy. Journal of Composite Materials, 2020, 54, 4535-4544.	2.4	3
3	Mechanical properties of sisal-epoxy composites as functions of fiber-to-epoxy ratio. AIMS Materials Science, 2019, 6, 985-996.	1.4	23
4	Predicting the stress relaxation behavior of glass-fiber reinforced polypropylene composites. Composites Science and Technology, 2018, 161, 85-91.	7.8	33
5	Understanding the Stress Relaxation Behavior of Polymers Reinforced with Short Elastic Fibers. Materials, 2017, 10, 472.	2.9	57
6	Modeling and Predicting the Stress Relaxation of Composites with Short and Randomly Oriented Fibers. Materials, 2017, 10, 1207.	2.9	13
7	A Study of the Friction Coefficients of Unidirectional and Woven Carbon Fibre/Epoxy Composites. Polymers and Polymer Composites, 2016, 24, 255-263.	1.9	4
8	Preliminary Design and Experimental Investigation of a Novel Pneumatic Conveying Method to Disperse Natural Fibers in Thermoset Polymers. Materials, 2016, 9, 548.	2.9	1
9	Lignin-Based Foaming Materials. , 2016, , 217-232.		5
10	Heterogeneous Surface Wear Models for the Prediction of the Specific Wear Rate of Woven Carbon Fibre Reinforced Epoxy Composites. Polymers and Polymer Composites, 2015, 23, 359-368.	1.9	0
11	Investigating the Mechanical Response of Soy-Based Polyurethane Foams with Glass Fibers under Compression at various Rates. Frontiers in Forests and Global Change, 2015, 34, 281-298.	1.1	9
12	Polyurethane foam mechanical reinforcement by low-aspect ratio micro-crystalline cellulose and glass fibres. Journal of Cellular Plastics, 2015, 51, 59-73.	2.4	7
13	Effect of mixing conditions on the morphology and performance of fiber-reinforced polyurethane foam. Journal of Cellular Plastics, 2015, 51, 103-119.	2.4	23
14	Improvement in Compressive Behavior of Alkali-treated Wood Fibre-reinforced Bio-based Polyurethane Foams. Frontiers in Forests and Global Change, 2014, 33, 139-158.	1.1	8
15	A Novel Method to Deliver Natural Fibre for Mechanical Reinforcement of Polyurethane Foam. Frontiers in Forests and Global Change, 2014, 33, 123-138.	1.1	3
16	A simplified fabrication process for biofiber-reinforced polymer composites for automotive interior trim applications. Journal of Materials Science, 2014, 49, 2630-2639.	3.7	31
17	Novel lightweight sandwich-structured bio-fiber-reinforced poly(lactic acid) composites. Journal of Materials Science, 2014, 49, 2018-2026.	3.7	15
18	Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Composites Part B: Engineering, 2014, 56, 717-723.	12.0	148

MARK KORTSCHOT

#	Article	IF	CITATIONS
19	Factors affecting the electrical resistivity of kraft recovery boiler precipitator ash. Tappi Journal, 2014, 13, 31-39.	0.5	5
20	Pulp fiber-reinforced thermoset polymer composites: Effects of the pulp fibers and polymer. Composites Part B: Engineering, 2013, 48, 10-17.	12.0	28
21	An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels. Composite Structures, 2013, 106, 160-166.	5.8	64
22	Light-weight honeycomb core sandwich panels containing biofiber-reinforced thermoset polymer composite skins: Fabrication and evaluation. Composites Part B: Engineering, 2012, 43, 2875-2882.	12.0	49
23	Investigation of unsaturated polyester composites reinforced by aspen highâ€yield pulp fibers. Polymer Composites, 2012, 33, 169-177.	4.6	10
24	High speed compression of highly filled thin composites: Effect of binder content and stiffness. Progress in Organic Coatings, 2009, 64, 356-360.	3.9	6
25	High speed microcompression of paper coatings. Journal of Materials Science, 2009, 44, 2507-2512.	3.7	1
26	Predicting the tensile strength of natural fibre reinforced thermoplastics. Composites Science and Technology, 2007, 67, 2454-2466.	7.8	132
27	Dispersion of Wood Microfibers in a Matrix of Thermoplastic Starch and Starch–Polylactic Acid Blend. Journal of Biobased Materials and Bioenergy, 2007, 1, 71-77.	0.3	22
28	Modeling energy consumption for the generation of microfibres from bleached kraft pulp fibres in a PFI mill. BioResources, 2007, 2, 210-222.	1.0	16
29	Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung, 2006, 60, 53-58.	1.9	110
30	Predicting the elastic modulus of natural fibre reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1660-1671.	7.6	228
31	Predicting the Elastic Modulus of Hybrid Fibre Reinforced Thermoplastics. Polymers and Polymer Composites, 2006, 14, 239-249.	1.9	3
32	Cellulose Microfibers as Reinforcing Agents for Structural Materials. ACS Symposium Series, 2006, , 169-186.	0.5	17
33	Effect of Interactions between Interface Modifiers and Viscosity Modifiers on the Performance and Processibility of the Rice Hulls-HDPE Composites. Journal of Reinforced Plastics and Composites, 2006, 25, 1691-1699.	3.1	2
34	Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung, 2005, 59, 102-107.	1.9	353
35	Adhesion and durability of latex paint on wood fiber reinforced polyethylene. Progress in Organic Coatings, 2004, 49, 33-41.	3.9	27
36	Polystyrene foams. I. Processing-structure relationships. Journal of Applied Polymer Science, 2003, 90, 1412-1420.	2.6	39

3

Mark Kortschot

#	Article	IF	CITATIONS
37	Polystyrene foams. II. Structure-impact properties relationships. Journal of Applied Polymer Science, 2003, 90, 1421-1426.	2.6	45
38	Polystyrene foams. III. Structure-tensile properties relationships. Journal of Applied Polymer Science, 2003, 90, 1427-1434.	2.6	54
39	The role of the resin fillet in the delamination of honeycomb sandwich structures. Composites Science and Technology, 2002, 62, 1811-1819.	7.8	58
40	Wood-flour-reinforced polyethylene: Viscoelastic behavior and threaded fasteners. Polymer Engineering and Science, 2002, 42, 2336-2350.	3.1	12
41	Sorption and diffusion of carbon dioxide in wood-fiber/polystyrene composites. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 723-735.	2.1	11
42	A simplified beam analysis of the end notched flexure mode II delamination specimen. Composite Structures, 1999, 45, 271-278.	5.8	23
43	Processing and characterization of microcellular foamed high-density polythylene/isotactic polypropylene blends. Polymer Engineering and Science, 1998, 38, 1205-1215.	3.1	237
44	Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers. Polymer Engineering and Science, 1996, 36, 2645-2662.	3.1	263
45	Characterization of composite mesostructures and damage by de-ply radiography. Composites Science and Technology, 1995, 53, 175-181.	7.8	19
46	The production and properties of oriented polypropylene laminates. Polymer Engineering and Science, 1994, 34, 1016-1024.	3.1	6
47	The fatigue damage mechanics of notched carbon fibre/PEEK laminates. Composites, 1992, 23, 305-311.	0.7	42
48	Damage mechanics of composite materials. III: Prediction of damage growth and notched strength. Composites Science and Technology, 1991, 40, 147-165.	7.8	41
49	Damage mechanics of composite materials. IV: The effect of lay-up on damage growth and notched strength. Composites Science and Technology, 1991, 40, 167-179.	7.8	30
50	Damage mechanics of composite materials: II— a damaged-based notched strength model. Composites Science and Technology, 1990, 39, 303-326.	7.8	65
51	Damage mechanics of composite materials: l— Measurements of damage and strength. Composites Science and Technology, 1990, 39, 289-301.	7.8	139
52	Computer simulation of the electrical conductivity of polymer composites containing metallic fillers. Polymer Composites, 1988, 9, 60-71.	4.6	55
53	Electromagnetic interference shielding with nickel-coated mica composites. Polymer Composites, 1985, 6, 296-303.	4.6	32
54	Torsional braid analysis of bitumen-liquid rubber mixtures. Polymer Engineering and Science, 1984, 24, 252-258.	3.1	16

#	Article	IF	CITATIONS
55	Wood Microfibres - Effective Reinforcing Agents for Composites. , 0, , .		4