Jeremy D Maestas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6784512/publications.pdf

Version: 2024-02-01

331670 330143 1,612 36 21 37 citations h-index g-index papers 41 41 41 1098 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tracking spatial regimes as an early warning for a species of conservation concern. Ecological Applications, 2022, 32, e02480.	3.8	8
2	The elevational ascent and spread of exotic annual grass dominance in the Great Basin, USA. Diversity and Distributions, 2022, 28, 83-96.	4.1	36
3	Defend the core: Maintaining intact rangelands by reducing vulnerability to invasive annual grasses. Rangelands, 2022, 44, 181-186.	1.9	21
4	A geographic strategy for cross-jurisdictional, proactive management of invasive annual grasses in Oregon. Rangelands, 2022, 44, 173-180.	1.9	19
5	Tracking spatial regimes in animal communities: Implications for resilience-based management. Ecological Indicators, 2022, 136, 108567.	6.3	5
6	Improving Landsat predictions of rangeland fractional cover with multitask learning and uncertainty. Methods in Ecology and Evolution, 2021, 12, 841-849.	5.2	107
7	Reversing tree expansion in sagebrush steppe yields populationâ€level benefit for imperiled grouse. Ecosphere, 2021, 12, e03551.	2.2	20
8	Reversing Tree Encroachment Increases Usable Space for Sageâ€Grouse during the Breeding Season. Wildlife Society Bulletin, 2021, 45, 488-497.	0.8	7
9	Beyond Inventories: Emergence of a New Era in Rangeland Monitoring. Rangeland Ecology and Management, 2020, 73, 577-583.	2.3	31
10	Quantifying Pinyon-Juniper Reduction within North America's Sagebrush Ecosystem. Rangeland Ecology and Management, 2020, 73, 420-432.	2.3	26
11	Coproducing Science to Inform Working Lands: The Next Frontier in Nature Conservation. BioScience, 2020, 70, 90-96.	4.9	30
12	Lowâ€ŧech riparian and wet meadow restoration increases vegetation productivity and resilience across semiarid rangelands. Restoration Ecology, 2019, 27, 269-278.	2.9	42
13	Operationalizing Resilience and Resistance Concepts to Address Invasive Grass-Fire Cycles. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	66
14	Spatial Imaging and Screening for Regime Shifts. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	22
15	CEAP Quantifies Conservation Outcomes for Wildlife and People on Western Grazing Lands. Rangelands, 2019, 41, 211-217.	1.9	6
16	Mule deer juniper use is an unreliable indicator of habitat quality: Comments on Coe et al. (2018). Journal of Wildlife Management, 2019, 83, 755-762.	1.8	5
17	Climate-Driven Shifts in Soil Temperature and Moisture Regimes Suggest Opportunities to Enhance Assessments of Dryland Resilience and Resistance. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	40
18	Understanding biological effectiveness before scaling up rangeâ€wide restoration investments for Gunnison sageâ€grouse. Ecosphere, 2018, 9, e02144.	2.2	15

#	Article	IF	CITATIONS
19	Phenology largely explains taller grass at successful nests in greater sageâ€grouse. Ecology and Evolution, 2018, 8, 356-364.	1.9	27
20	Innovation in rangeland monitoring: annual, 30Âm, plant functional type percent cover maps for U.S. rangelands, 1984–2017. Ecosphere, 2018, 9, e02430.	2.2	165
21	Seasonal drought in North America's sagebrush biome structures dynamic mesic resources for sageâ€grouse. Ecology and Evolution, 2018, 8, 12492-12505.	1.9	23
22	Bird Responses to Removal of Western Juniper in Sagebrush-Steppe. Rangeland Ecology and Management, 2017, 70, 87-94.	2.3	43
23	Restoring Sageâ€grouse nesting habitat through removal of early successional conifer. Restoration Ecology, 2017, 25, 1026-1034.	2.9	11
24	Short-Term Response of Sage-Grouse Nesting to Conifer Removal in the Northern Great Basin. Rangeland Ecology and Management, 2017, 70, 50-58.	2.3	37
25	Using Resilience and Resistance Concepts to Manage Persistent Threats to Sagebrush Ecosystems and Greater Sage-grouse. Rangeland Ecology and Management, 2017, 70, 149-164.	2.3	92
26	Mapping Tree Canopy Cover in Support of Proactive Prairie Grouse Conservation in Western North America. Rangeland Ecology and Management, 2017, 70, 15-24.	2.3	53
27	Effects of conifer expansion on greater sageâ€grouse nesting habitat selection. Journal of Wildlife Management, 2017, 81, 86-95.	1.8	27
28	Nextâ€generation restoration for sageâ€grouse: a framework for visualizing local conifer cuts within a landscape context. Ecosphere, 2017, 8, e01888.	2.2	18
29	Better living through conifer removal: A demographic analysis of sage-grouse vital rates. PLoS ONE, 2017, 12, e0174347.	2.5	28
30	Public lands and private waters: scarce mesic resources structure land tenure and sageâ€grouse distributions. Ecosphere, 2016, 7, e01208.	2.2	64
31	Tapping Soil Survey Information for Rapid Assessment of Sagebrush Ecosystem Resilience and Resistance. Rangelands, 2016, 38, 120-128.	1.9	76
32	Saving sage-grouse from the trees: A proactive solution to reducing a key threat to a candidate species. Biological Conservation, 2013, 167, 233-241.	4.1	150
33	Trial by Fire. Rangelands, 2013, 35, 2-10.	1.9	24
34	Improving the Scientific Integrity of Nontechnical Publications. Rangelands, 2006, 28, 32-33.	1.9	1
35	Biodiversity across a Rural Land-Use Gradient. Conservation Biology, 2003, 17, 1425-1434.	4.7	166
36	Biodiversity and Landâ€Use Change in the American Mountain West. Geographical Review, 2001, 91, 509-524.	1.8	38