Kevin Arbuckle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6784332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A case of cooperative breeding in the European Starling, Sturnus vulgaris. Ecology and Evolution, 2022, 12, e8318.	0.8	1
2	Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science, 2021, 371, 386-390.	6.0	96
3	Coevolution of group-living and aposematism in caterpillars: warning colouration may facilitate the evolution from group-living to solitary habits. Bmc Ecology and Evolution, 2021, 21, 25.	0.7	7
4	A double pedigree reveals genetic but not cultural inheritance of cooperative personalities in wild banded mongooses. Ecology Letters, 2021, 24, 1966-1975.	3.0	9
5	Radiating pain: venom has contributed to the diversification of the largest radiations of vertebrate and invertebrate animals. Bmc Ecology and Evolution, 2021, 21, 150.	0.7	3
6	Cooperatively breeding banded mongooses do not avoid inbreeding through familiarity-based kin recognition. Behavioral Ecology and Sociobiology, 2021, 75, 1.	0.6	1
7	Fangs for the Memories? A Survey of Pain in Snakebite Patients Does Not Support a Strong Role for Defense in the Evolution of Snake Venom Composition. Toxins, 2020, 12, 201.	1.5	20
8	Why don't long-finned pilot whales have a widespread postreproductive lifespan? Insights from genetic data. Behavioral Ecology, 2020, 31, 508-518.	1.0	9
9	From molecules to macroevolution: Venom as a model system for evolutionary biology across levels of life. Toxicon: X, 2020, 6, 100034.	1.2	14
10	The functional convergence of antibiotic resistance in βâ€lactamases is not conferred by a simple convergent substitution of amino acid. Evolutionary Applications, 2019, 12, 1812-1822.	1.5	2
11	Varanid Lizard Venoms Disrupt the Clotting Ability of Human Fibrinogen through Destructive Cleavage. Toxins, 2019, 11, 255.	1.5	14
12	Coagulotoxic effects by brown snake (Pseudonaja) and taipan (Oxyuranus) venoms, and the efficacy of a new antivenom. Toxicology in Vitro, 2019, 58, 97-109.	1.1	30
13	Coevolution of Snake Venom Toxic Activities and Diet: Evidence that Ecological Generalism Favours Toxicological Diversity. Toxins, 2019, 11, 711.	1.5	43
14	Factor X activating Atractaspis snake venoms and the relative coagulotoxicity neutralising efficacy of African antivenoms. Toxicology Letters, 2018, 288, 119-128.	0.4	34
15	Proteomic and functional variation within black snake venoms (Elapidae: Pseudechis). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 205, 53-61.	1.3	14
16	Harden up: metal acquisition in the weaponized ovipositors of aculeate hymenoptera. Zoomorphology, 2018, 137, 389-406.	0.4	9
17	Phylogenetic Comparative Methods can Provide Important Insights into the Evolution of Toxic Weaponry. Toxins, 2018, 10, 518.	1.5	8
18	A new species of bandy-bandy (Vermicella: Serpentes: Elapidae) from the Weipa region, Cape York, Australia. Zootaxa, 2018, 4446, 1.	0.2	0

#	Article	IF	CITATIONS
19	Correlation between ontogenetic dietary shifts and venom variation in Australian brown snakes () Tj ETQq1 1 0 197, 53-60.	.784314 rg 1.3	BT /Overlock 54
20	Coevolution takes the sting out of it: Evolutionary biology and mechanisms of toxin resistance in animals. Toxicon, 2017, 140, 118-131.	0.8	60
21	Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies. Toxicology Letters, 2017, 280, 159-170.	0.4	69
22	Catch a tiger snake by its tail: Differential toxicity, co-factor dependence and antivenom efficacy in a procoagulant clade of Australian venomous snakes. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2017, 202, 39-54.	1.3	33
23	The biology of color. Science, 2017, 357, .	6.0	509
24	The Bold and the Beautiful: a Neurotoxicity Comparison of New World Coral Snakes in the Micruroides and Micrurus Genera and Relative Neutralization by Antivenom. Neurotoxicity Research, 2017, 32, 487-495.	1.3	21
25	Quantification provides a conceptual basis for convergent evolution. Biological Reviews, 2017, 92, 815-829.	4.7	54
26	How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting. Toxins, 2017, 9, 103.	1.5	71
27	Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms. Toxins, 2017, 9, 242.	1.5	37
28	Evolutionary Context of Venom in Animals. Toxinology, 2017, , 3-31.	0.2	22
29	Tempo and Mode of the Evolution of Venom and Poison in Tetrapods. Toxins, 2016, 8, 193.	1.5	26
30	Canopy Venom: Proteomic Comparison among New World Arboreal Pit-Viper Venoms. Toxins, 2016, 8, 210.	1.5	7
31	Analysing Convergent Evolution: A Practical Guide to Methods. , 2016, , 23-36.		11
32	Chemical antipredator defence is linked to higher extinction risk. Royal Society Open Science, 2016, 3, 160681.	1.1	2
33	Patterns of philopatry and longevity contribute to the evolution of post-reproductive lifespan in mammals. Biology Letters, 2016, 12, 20150992.	1.0	15
34	<tt>windex</tt> : Analyzing Convergent Evolution Using the Wheatsheaf Index in R. Evolutionary Bioinformatics, 2015, 11, EBO.S20968.	0.6	31
35	Are mixed diets beneficial for the welfare of captive axolotls (Ambystoma mexicanum)? Effects of feeding regimes on growth and behavior. Journal of Veterinary Behavior: Clinical Applications and Research, 2015, 10, 185-190.	0.5	4
36	Antipredator defenses predict diversification rates. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13597-13602.	3.3	68

#	Article	IF	CITATIONS
37	Widespread convergence in toxin resistance by predictable molecular evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11911-11916.	3.3	130
38	Evolutionary Context of Venom in Animals. , 2015, , 1-23.		7
39	A simple measure of the strength of convergent evolution. Methods in Ecology and Evolution, 2014, 5, 685-693.	2.2	82
40	Does chemical defence increase niche space? A phylogenetic comparative analysis of the Musteloidea. Evolutionary Ecology, 2013, 27, 863-881.	0.5	22
41	Suitability of day-old chicks as food for captive snakes. Journal of Animal Physiology and Animal Nutrition, 2010, 94, e296-e307.	1.0	12