
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6784113/publications.pdf Version: 2024-02-01

MONICA FEDELE

#	Article	IF	CITATIONS
1	The Epithelial–Mesenchymal Transition at the Crossroads between Metabolism and Tumor Progression. International Journal of Molecular Sciences, 2022, 23, 800.	1.8	59
2	Animal Models of Human Pathology 2020. BioMed Research International, 2022, 2022, 1-2.	0.9	0
3	Selective Photo-Assisted Eradication of Triple-Negative Breast Cancer Cells through Aptamer Decoration of Doped Conjugated Polymer Nanoparticles. Pharmaceutics, 2022, 14, 626.	2.0	24
4	Optimization of Short RNA Aptamers for TNBC Cell Targeting. International Journal of Molecular Sciences, 2022, 23, 3511.	1.8	7
5	Profiling Cancer Cells by Cell-SELEX: Use of Aptamers for Discovery of Actionable Biomarkers and Therapeutic Applications Thereof. Pharmaceutics, 2022, 14, 28.	2.0	17
6	Epithelial–Mesenchymal Transition (EMT) 2021. International Journal of Molecular Sciences, 2022, 23, 5848.	1.8	28
7	Molecular and cellular mechanisms in recurrent glioblastoma chemoresistance. , 2021, , 365-400.		Ο
8	Pituitary Tumors: New Insights into Molecular Features, Diagnosis and Therapeutic Targeting. Cancers, 2021, 13, 1697.	1.7	0
9	The Transcription Regulator Patz1 Is Essential for Neural Stem Cell Maintenance and Proliferation. Frontiers in Cell and Developmental Biology, 2021, 9, 657149.	1.8	5
10	Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR aptamer-conjugated polymeric nanovectors. Journal of Experimental and Clinical Cancer Research, 2021, 40, 239.	3.5	47
11	Metabolic Reprogramming in Thyroid Cancer: Role of the Epithelial-Mesenchymal Transition. Endocrines, 2021, 2, 427-438.	0.4	2
12	Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. Journal of Experimental and Clinical Cancer Research, 2020, 39, 180.	3.5	38
13	Novel Aptamers Selected on Living Cells for Specific Recognition of Triple-Negative Breast Cancer. IScience, 2020, 23, 100979.	1.9	19
14	Abstract 5256: Toward biomarkers discovery: Profiling triple-negative breast cancer cells by cell-SELEX. , 2020, , .		0
15	PATZ1 Is Overexpressed in Pediatric Glial Tumors and Correlates with Worse Event-Free Survival in High-grade Gliomas. Cancers, 2019, 11, 1537.	1.7	9
16	Proneural-Mesenchymal Transition: Phenotypic Plasticity to Acquire Multitherapy Resistance in Glioblastoma. International Journal of Molecular Sciences, 2019, 20, 2746.	1.8	138
17	Dual Oncogenic/Anti-Oncogenic Role of PATZ1 in FRTL5 Rat Thyroid Cells Transformed by the Ha-RasV12 Oncogene. Genes, 2019, 10, 127.	1.0	6
18	Oligonucleotide aptamers against tyrosine kinase receptors: Prospect for anticancer applications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 263-277.	3.3	33

#	Article	IF	CITATIONS
19	HMGA2 cooperates with either p27 ^{kip1} deficiency or Cdk4 ^{R24C} mutation in pituitary tumorigenesis. Cell Cycle, 2018, 17, 580-588.	1.3	11
20	TNBC Challenge: Oligonucleotide Aptamers for New Imaging and Therapy Modalities. Pharmaceuticals, 2018, 11, 123.	1.7	36
21	Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer. Theranostics, 2018, 8, 5178-5199.	4.6	48
22	Trabectedin modulates the senescence-associated secretory phenotype and promotes cell death in senescent tumor cells by targeting NF-κB. Oncotarget, 2018, 9, 19929-19944.	0.8	17
23	Loss of One or Two PATZ1 Alleles Has a Critical Role in the Progression of Thyroid Carcinomas Induced by the RET/PTC1 Oncogene. Cancers, 2018, 10, 92.	1.7	7
24	Complementary actions of dopamine D2 receptor agonist and antiâ€vegf therapy on tumoral vessel normalization in a transgenic mouse model. International Journal of Cancer, 2017, 140, 2150-2161.	2.3	25
25	Aptamer-mediated impairment of EGFR-integrin αvβ3 complex inhibits vasculogenic mimicry and growth of triple-negative breast cancers. Scientific Reports, 2017, 7, 46659.	1.6	78
26	The POZ/BTB and AT-Hook Containing Zinc Finger 1 (PATZ1) Transcription Regulator: Physiological Functions and Disease Involvement. International Journal of Molecular Sciences, 2017, 18, 2524.	1.8	25
27	The Epithelial-to-Mesenchymal Transition in Breast Cancer: Focus on Basal-Like Carcinomas. Cancers, 2017, 9, 134.	1.7	101
28	PATZ1 is a new prognostic marker of glioblastoma associated with the stem-like phenotype and enriched in the proneural subtype. Oncotarget, 2017, 8, 59282-59300.	0.8	30
29	The Tumor Suppressive Role of PATZ1 in Thyroid Cancer: A Matter of Epithelial-Mesenchymal Transition. Chemotherapy, 2016, 05, .	0.0	4
30	Animal Models of Human Pathology 2016. BioMed Research International, 2016, 2016, 1-2.	0.9	0
31	PATZ1 is a target of miR-29b that is induced by Ha-Ras oncogene in rat thyroid cells. Scientific Reports, 2016, 6, 25268.	1.6	11
32	A polymorphism of HMGA1 protects against proliferative diabetic retinopathy by impairing HMGA1-induced VEGFA expression. Scientific Reports, 2016, 6, 39429.	1.6	36
33	PATZ1 is a new prognostic marker of diffuse large B cell lymphomas. European Journal of Cancer, 2016, 61, S185-S186.	1.3	0
34	Oligonucleotide aptamers as innovative therapeutic tools for triple-negative breast cancers. European Journal of Cancer, 2016, 61, S117.	1.3	0
35	PATZ1 expression correlates positively with BAX and negatively with BCL6 and survival in human diffuse large B cell lymphomas. Oncotarget, 2016, 7, 59158-59172.	0.8	12
36	Animal Models of Human Pathology 2014. BioMed Research International, 2015, 2015, 1-2.	0.9	0

#	Article	IF	CITATIONS
37	Aptamer targeting EGFRvIII mutant hampers its constitutive autophosphorylation and affects migration, invasion and proliferation of glioblastoma cells. Oncotarget, 2015, 6, 37570-37587.	0.8	49
38	Transcriptional and post-transcriptional regulation of transmembrane protein 132A. Molecular and Cellular Biochemistry, 2015, 405, 291-299.	1.4	7
39	PATZ1 acts as a tumor suppressor in thyroid cancer via targeting p53-dependent genes involved in EMT and cell migration. Oncotarget, 2015, 6, 5310-5323.	0.8	44
40	Animal Models of Human Pathology 2013. BioMed Research International, 2014, 2014, 1-2.	0.9	0
41	<i>Hmga1/Hmga2</i> double knock-out mice display a "superpygmy―phenotype. Biology Open, 2014, 3, 372-378.	0.6	54
42	<i>CBX7</i> gene expression plays a negative role in adipocyte cell growth and differentiation. Biology Open, 2014, 3, 871-879.	0.6	17
43	The dosage of Patz1 modulates reprogramming process. Scientific Reports, 2014, 4, 7519.	1.6	20
44	Embryonic defects and growth alteration in mice with homozygous disruption of the <i>Patz1</i> gene. Journal of Cellular Physiology, 2013, 228, 646-653.	2.0	29
45	PATZ1 interacts with p53 and regulates expression of p53-target genes enhancing apoptosis or cell survival based on the cellular context. Cell Death and Disease, 2013, 4, e963-e963.	2.7	49
46	Pituitary Adenoma: Role of HMGA Proteins. , 2013, , 161-168.		0
47	Animal Models of Human Pathology 2012. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-2.	3.0	2
48	PIT1 upregulation by HMGA proteins has a role in pituitary tumorigenesis. Endocrine-Related Cancer, 2012, 19, 123-135.	1.6	34
49	CBX7 is a tumor suppressor in mice and humans. Journal of Clinical Investigation, 2012, 122, 612-623.	3.9	133
50	POZ-, AT-hook-, and Zinc Finger-containing Protein (PATZ) Interacts with Human Oncogene B Cell Lymphoma 6 (BCL6) and Is Required for Its Negative Autoregulation. Journal of Biological Chemistry, 2012, 287, 18308-18319.	1.6	16
51	Altered MicroRNA Expression Profile in Human Pituitary GH Adenomas: Down-Regulation of miRNA Targeting HMGA1, HMGA2, and E2F1. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1128-E1138.	1.8	136
52	Tumor suppressor activity of CBX7 in lung carcinogenesis. Cell Cycle, 2012, 11, 1888-1891.	1.3	29
53	The HMGA1-IGF-I/IGFBP System: A Novel Pathway for Modulating Glucose Uptake. Molecular Endocrinology, 2012, 26, 1578-1589.	3.7	41
54	Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene, 2012, 31, 3857-3865.	2.6	82

#	Article	IF	CITATIONS
55	High mobility group A-interacting proteins in cancer: focus on chromobox protein homolog 7, homeodomain interacting protein kinase 2 and PATZ. Journal of Nucleic Acids Investigation, 2012, 3, 1.	0.5	5
56	HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene, 2011, 30, 3024-3035.	2.6	71
57	Animal Models of Human Pathology. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-1.	3.0	4
58	Role of the high mobility group A proteins in the regulation of pituitary cell cycle. Journal of Molecular Endocrinology, 2010, 44, 309-318.	1.1	28
59	HMGA2: A pituitary tumour subtype-specific oncogene?. Molecular and Cellular Endocrinology, 2010, 326, 19-24.	1.6	58
60	HMGA and Cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 48-54.	0.9	132
61	Interaction between HMGA1 and Retinoblastoma Protein Is Required for Adipocyte Differentiation. Journal of Biological Chemistry, 2009, 284, 25993-26004.	1.6	16
62	Impairment of the p27kip1 function enhances thyroid carcinogenesis in TRK-T1 transgenic mice. Endocrine-Related Cancer, 2009, 16, 483-490.	1.6	15
63	HMGA Proteins Up-regulate <i>CCNB2</i> Gene in Mouse and Human Pituitary Adenomas. Cancer Research, 2009, 69, 1844-1850.	0.4	107
64	Chromobox Protein Homologue 7 Protein, with Decreased Expression in Human Carcinomas, Positively Regulates E-Cadherin Expression by Interacting with the Histone Deacetylase 2 Protein. Cancer Research, 2009, 69, 7079-7087.	0.4	72
65	Regulation of microRNA expression by HMGA1 proteins. Oncogene, 2009, 28, 1432-1442.	2.6	44
66	Detection of high-mobility group proteins A1 and A2 represents a valid diagnostic marker in post-pubertal testicular germ cell tumours. Journal of Pathology, 2008, 214, 58-64.	2.1	57
67	PATZ1 gene has a critical role in the spermatogenesis and testicular tumours. Journal of Pathology, 2008, 215, 39-47.	2.1	72
68	Hmga1 null mice are less susceptible to chemically induced skin carcinogenesis. European Journal of Cancer, 2008, 44, 318-325.	1.3	7
69	HMGA1 protein is a novel target of the ATM kinase. European Journal of Cancer, 2008, 44, 2668-2679.	1.3	22
70	The Mia/Cd-rap gene expression is downregulated by the high-mobility group A proteins in mouse pituitary adenomas. Endocrine-Related Cancer, 2007, 14, 875-886.	1.6	11
71	SOM230, A New Somatostatin Analogue, Is Highly Effective in the Therapy of Growth Hormone/Prolactin-Secreting Pituitary Adenomas. Clinical Cancer Research, 2007, 13, 2738-2744.	3.2	39
72	B-RAF mutations are a rare event in pituitary adenomas. Journal of Endocrinological Investigation, 2007, 30, RC1-RC3.	1.8	12

#	Article	IF	CITATIONS
73	Roles of HMGA proteins in cancer. Nature Reviews Cancer, 2007, 7, 899-910.	12.8	627
74	E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression. Cell Division, 2006, 1, 17.	1.1	23
75	HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell, 2006, 9, 459-471.	7.7	226
76	Critical Role of the HMGA2 Gene in Pituitary Adenomas. Cell Cycle, 2006, 5, 2045-2048.	1.3	40
77	Haploinsufficiency of the Hmga1 Gene Causes Cardiac Hypertrophy and Myelo-Lymphoproliferative Disorders in Mice. Cancer Research, 2006, 66, 2536-2543.	0.4	104
78	High-mobility-group A1 (HMGA1) proteins down-regulate the expression of the recombination activating gene 2 (RAG2). Biochemical Journal, 2005, 389, 91-97.	1.7	12
79	Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nature Medicine, 2005, 11, 765-773.	15.2	204
80	Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene, 2005, 24, 3427-3435.	2.6	137
81	HMGA1 protein expression sensitizes cells to cisplatin-induced cell death. Oncogene, 2005, 24, 6809-6819.	2.6	29
82	IFN-Â gene expression is controlled by the architectural transcription factor HMGA1. International Immunology, 2005, 17, 297-306.	1.8	13
83	Non-Histone Chromatin Proteins. , 2005, , 1299-1301.		0
84	Identification of the Genes Up- and Down-Regulated by the High Mobility Group A1 (HMGA1) Proteins. Cancer Research, 2004, 64, 5728-5735.	0.4	46
85	Phosphorylation of High-Mobility Group Protein A2 by Nek2 Kinase during the First Meiotic Division in Mouse Spermatocytes. Molecular Biology of the Cell, 2004, 15, 1224-1232.	0.9	97
86	HMGA1 Protein Overexpression in Human Breast Carcinomas. Clinical Cancer Research, 2004, 10, 7637-7644.	3.2	69
87	Translational regulation of a novel testis-specific RNF4 transcript. Molecular Reproduction and Development, 2003, 66, 1-7.	1.0	43
88	Negative Regulation of BRCA1 Gene Expression by HMGA1 Proteins Accounts for the Reduced BRCA1 Protein Levels in Sporadic Breast Carcinoma. Molecular and Cellular Biology, 2003, 23, 2225-2238.	1.1	119
89	Loss of Hmga1 gene function affects embryonic stem cell lymphohematopoietic differentiation. FASEB Journal, 2003, 17, 1-27.	0.2	63
90	A truncated HMGA1 gene induces proliferation of the 3T3-L1 pre-adipocytic cells: a model of human lipomas. Carcinogenesis, 2003, 24, 1861-1869.	1.3	28

#	Article	IF	CITATIONS
91	High-mobility group A1 proteins are overexpressed in human leukaemias. Biochemical Journal, 2003, 372, 145-150.	1.7	39
92	PATZ Attenuates the RNF4-mediated Enhancement of Androgen Receptor-dependent Transcription. Journal of Biological Chemistry, 2002, 277, 3280-3285.	1.6	33
93	The Homeodomain-Interacting Protein Kinase 2 Gene Is Expressed Late in Embryogenesis and Preferentially in Retina, Muscle, and Neural Tissues. Biochemical and Biophysical Research Communications, 2002, 290, 942-947.	1.0	47
94	Establishment of a non-tumorigenic papillary thyroid cell line (FB-2) carrying theRET/PTC1 rearrangement. International Journal of Cancer, 2002, 97, 608-614.	2.3	41
95	Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene, 2002, 21, 3190-3198.	2.6	201
96	HMGA1 and HMGA2 protein expression in mouse spermatogenesis. Oncogene, 2002, 21, 3644-3650.	2.6	98
97	The High Mobility Group A2 gene is amplified and overexpressed in human prolactinomas. Cancer Research, 2002, 62, 2398-405.	0.4	69
98	RNF4 Is a Growth Inhibitor Expressed in Germ Cells but Not in Human Testicular Tumors. American Journal of Pathology, 2001, 159, 1225-1230.	1.9	49
99	High mobility group HMGI(Y) protein expression in human colorectal hyperplastic and neoplastic diseases. International Journal of Cancer, 2001, 91, 147-151.	2.3	7
100	High mobility group I (Y) proteins bind HIPK2, a serine-threonine kinase protein which inhibits cell growth. Oncogene, 2001, 20, 6132-6141.	2.6	86
101	Onset of natural killer cell lymphomas in transgenic mice carrying a truncated HMGI-C gene by the chronic stimulation of the IL-2 and IL-15 pathway. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7970-7975.	3.3	92
102	Role of the high mobility group A proteins in human lipomas. Carcinogenesis, 2001, 22, 1583-1591.	1.3	110
103	Critical Role of the HMGI(Y) Proteins in Adipocytic Cell Growth and Differentiation. Molecular and Cellular Biology, 2001, 21, 2485-2495.	1.1	86
104	High mobility group HMGI(Y) protein expression in human colorectal hyperplastic and neoplastic diseases. International Journal of Cancer, 2001, 91, 147-151.	2.3	82
105	Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4256-4261.	3.3	146
106	A Novel Member of the BTB/POZ Family, PATZ, Associates with the RNF4 RING Finger Protein and Acts as a Transcriptional Repressor. Journal of Biological Chemistry, 2000, 275, 7894-7901.	1.6	83
107	Involvement of theHMGI(Y) gene in a microfollicular adenoma of the thyroid. Genes Chromosomes and Cancer, 1999, 24, 286-289.	1.5	12
108	Truncated and chimeric HMGI-C genes induce neoplastic transformation of NIH3T3 murine fibroblasts. Oncogene, 1998, 17, 413-418.	2.6	113

#	Article	IF	CITATIONS
109	Increase in AP-1 activity is a general event in thyroid cell transformation in vitro and in vivo. Oncogene, 1998, 17, 377-385.	2.6	51
110	Identification and Characterization of a Novel RING-Finger Gene (RNF4) Mapping at 4p16.3. Genomics, 1998, 47, 258-265.	1.3	28
111	Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFκB p65 protein expression. Oncogene, 1997, 15, 1987-1994.	2.6	165
112	Aptamers and antibodies: rivals or allies in cancer targeted therapy?. Exploration of Targeted Anti-tumor Therapy, 0, , .	0.5	5
113	The Genetics of Pituitary Adenomas. , 0, , .		1
114	Thymosin β-10 gene expression as a possible tool in diagnosis of thyroid neoplasias. Oncology Reports, 0, , .	1.2	5
115	MicroRNAs in pituitary tumours. Endocrine Abstracts, 0, , .	0.0	0
116	Targeting ofPATZ1by miR-29b is a downstream effect of oncogenic Ras signalling in thyroid cells. Endocrine Abstracts, 0, , .	0.0	0
117	PATZ1 downregulation promotes proliferation and migration in Ras-driven thyroid transformation. Endocrine Abstracts, 0, , .	0.0	0
118	Novel Aptamers Selected on Living Cells for Specific Recognition of Triple-Negative Breast Cancer. SSRN Electronic Journal, 0, , .	0.4	0