Delia Chillura Martino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/67840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differentiation among dairy products by combination of fast field cycling NMR relaxometry data and chemometrics. Magnetic Resonance in Chemistry, 2022, 60, 369-385.	1.1	6
2	Archaeometric study of execution techniques of white Attic vases: the case of the Perseus crater in Agrigento. RSC Advances, 2022, 12, 4526-4535.	1.7	0
3	Changes in Physicochemical Properties of Biochar after Addition to Soil. Agriculture (Switzerland), 2022, 12, 320.	1.4	8
4	Processing of XRF elementary data from the painted ceramic surface with innovative tools Journal of Physics: Conference Series, 2022, 2204, 012083.	0.3	2
5	Cross-linked natural IntegroPectin films from citrus biowaste with intrinsic antimicrobial activity. Cellulose, 2022, 29, 5779-5802.	2.4	11
6	Solid state NMR investigation of the roman Acqualadroni rostrum: tenth year assessment of the consolidation treatment of the wooden part. Cellulose, 2021, 28, 1025-1038.	2.4	6
7	Investigation on four centuripe vases (late 3rd-2nd cent. B.C.) by portable X-ray fluorescence and total reflectance-FTIR. Journal of Cultural Heritage, 2021, 48, 326-335.	1.5	8
8	Recent Developments in Understanding Biochar's Physical–Chemistry. Agronomy, 2021, 11, 615.	1.3	37
9	Boosting the Performance of One-Step Solution-Processed Perovskite Solar Cells Using a Natural Monoterpene Alcohol as a Green Solvent Additive. ACS Applied Electronic Materials, 2021, 3, 1813-1825.	2.0	22
10	Biogenic Selenium Nanoparticles: A Fine Characterization to Unveil Their Thermodynamic Stability. Nanomaterials, 2021, 11, 1195.	1.9	18
11	Identification of microplastics using 4â€dimethylaminoâ€4′â€nitrostilbene solvatochromic fluorescence. Microscopy Research and Technique, 2021, 84, 2820-2831.	1.2	13
12	Newly discovered orichalcum ingots from Mediterranean sea: Further investigation. Journal of Archaeological Science: Reports, 2021, 37, 102901.	0.2	1
13	Heuristic Algorithm for the Analysis of Fast Field Cycling (FFC) NMR Dispersion Curves. Analytical Chemistry, 2021, 93, 8553-8558.	3.2	6
14	Improved Photocatalytic Activity of Polysiloxane TiO ₂ Composites by Thermally Induced Nanoparticle Bulk Clustering and Dye Adsorption. Langmuir, 2021, 37, 10354-10365.	1.6	5
15	Superhydrophobic TiO2/fluorinated polysiloxane hybrid coatings with controlled morphology for solar photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127633.	2.3	12
16	Volatile Compounds of Lemon and Grapefruit IntegroPectin. Molecules, 2021, 26, 51.	1.7	25
17	A New Water-Soluble Bactericidal Agent for the Treatment of Infections Caused by Gram-Positive and Gram-Negative Bacterial Strains. Antibiotics, 2020, 9, 586.	1.5	41
18	A combined physical–chemical and microbiological approach to unveil the fabrication, provenance, and state of conservation of the Kinkarakawa-gami art. Scientific Reports, 2020, 10, 16072.	1.6	11

#	Article	IF	CITATIONS
19	Formulation of Mesoporous Silica Nanoparticles for Controlled Release of Antimicrobials for Stone Preventive Conservation. Frontiers in Chemistry, 2020, 8, 699.	1.8	21
20	Biogenic iron-silver nanoparticles inhibit bacterial biofilm formation due to Ag+ release as determined by a novel phycoerythrin-based assay. Applied Microbiology and Biotechnology, 2020, 104, 6325-6336.	1.7	15
21	Water Dynamics at the Solid–Liquid Interface to Unveil the Textural Features of Synthetic Nanosponges. Journal of Physical Chemistry B, 2020, 124, 1847-1857.	1.2	17
22	Multi-scale structural analysis of xyloglucan colloidal dispersions and hydro-alcoholic gels. Cellulose, 2020, 27, 3025-3035.	2.4	7
23	Effect of halloysite nanotubes filler on polydopamine properties. Journal of Colloid and Interface Science, 2019, 555, 394-402.	5.0	22
24	Experimental investigation and modeling of diffusion dialysis for HCl recovery from waste pickling solution. Journal of Environmental Management, 2019, 235, 202-212.	3.8	30
25	Polyaminoazide mixtures for the synthesis of pH-responsive calixarene nanosponges. Beilstein Journal of Organic Chemistry, 2019, 15, 633-641.	1.3	9
26	Nonprecious Copperâ€Based Transparent Top Electrode via Seed Layer–Assisted Thermal Evaporation for Highâ€Performance Semitransparent nâ€iâ€p Perovskite Solar Cells. Advanced Materials Technologies, 2019, 4, 1800688.	3.0	41
27	An insight into the interaction between functionalized thermoplastic elastomer and layered double hydroxides through rheological investigations. Composites Part B: Engineering, 2018, 139, 47-54.	5.9	17
28	Polyamideâ€Based Fibers Containing Microwaveâ€Exfoliated Graphite Nanoplatelets. Advances in Polymer Technology, 2018, 37, 786-797.	0.8	1
29	Hyper-reticulated calixarene polymers: a new example of entirely synthetic nanosponge materials. Beilstein Journal of Organic Chemistry, 2018, 14, 1498-1507.	1.3	13
30	Convenient Photochemical Synthesis of Silverâ€Polyaminocyclodextrin Nanocomposites: The Role of the Light Source from a Mechanistic Viewpoint. ChemistrySelect, 2018, 3, 3048-3055.	0.7	2
31	Loading and release of the complex [Pt(DTBTA)(DMSO)Cl]Cl·CHCl3 with the 2,2′-dithiobis(benzothiazole) ligand into mesoporous silica and studies of antiproliferative activity on MCF-7 cells. Polyhedron, 2018, 153, 234-239.	1.0	7
32	Alcoholic nanolime dispersion obtained by the insolubilisation-precipitation method and its application for the deacidification of ancient paper. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 241-249.	2.3	27
33	A multi-analytical non-invasive and micro-invasive approach to canvas oil paintings. General considerations from a specific case. Microchemical Journal, 2017, 133, 607-613.	2.3	19
34	Synthesis of yttrium aluminum garnet nanoparticles in confined environment II: Role of the thermal treatment on the composition and microstructural evolution. Journal of Alloys and Compounds, 2017, 719, 264-270.	2.8	11
35	Development of controlled release systems of biocides for the conservation of cultural heritage. International Biodeterioration and Biodegradation, 2017, 125, 150-156.	1.9	34
36	A multivariate approach to the study of orichalcum ingots from the underwater Gela's archaeological site. Microchemical Journal, 2017, 135, 163-170.	2.3	20

Delia Chillura Martino

#	Article	IF	CITATIONS
37	Pre- and post-modification of mixed cyclodextrin-calixarene co-polymers: A route towards tunability. Carbohydrate Polymers, 2017, 157, 1393-1403.	5.1	36
38	Sensor Properties of Pristine and Functionalized Carbon Nanohorns. Electroanalysis, 2016, 28, 2489-2499.	1.5	23
39	Polyaminocyclodextrin nanosponges: synthesis, characterization and pH-responsive sequestration abilities. RSC Advances, 2016, 6, 49941-49953.	1.7	38
40	Influence of the Ce:YAG Amount on Structure and Optical Properties of Ce:YAG-PMMA Composites for White LED. Zeitschrift Fur Physikalische Chemie, 2016, 230, 1219-1231.	1.4	11
41	Photosynthesized silver–polyaminocyclodextrin nanocomposites as promising antibacterial agents with improved activity. RSC Advances, 2016, 6, 40090-40099.	1.7	19
42	Synthesis of yttrium aluminum garnet nanoparticles in confined environment, and their characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 82-90.	2.3	3
43	Low-Q peak in X-ray patterns of choline-phenylalanine and -homophenylalanine: A combined effect of chain and stacking. Chemical Physics Letters, 2016, 660, 99-101.	1.2	29
44	Preparation and characterisation of Ce:YAG -polycarbonate composites for white LED. Journal of Alloys and Compounds, 2016, 664, 726-731.	2.8	15
45	More insight into characterization of the waterlogged wooden part of Acqualadroni Roman Rostrum by solid-state NMR. Microchemical Journal, 2016, 124, 831-836.	2.3	7
46	Graphene and ionic liquids new gel paste electrodes for caffeic acid quantification. Sensors and Actuators B: Chemical, 2015, 212, 248-255.	4.0	36
47	Chromium liquid waste inertization in an inorganic alkali activated matrix: Leaching and NMR multinuclear approach. Journal of Hazardous Materials, 2015, 286, 474-483.	6.5	19
48	Silver nanoparticles stabilized by a polyaminocyclodextrin as catalysts for the reduction of nitroaromatic compounds. Journal of Molecular Catalysis A, 2015, 408, 250-261.	4.8	23
49	Electrochemistry of TiO2–iron hexacyanocobaltate composite electrodes. Solid State Ionics, 2014, 259, 53-58.	1.3	8
50	Ce:Y ₃ Al ₅ O ₁₂ –Poly(methyl methacrylate) Composite for White-Light-Emitting Diodes. Journal of Physical Chemistry C, 2014, 118, 9107-9113.	1.5	25
51	Photochemical synthesis of pyrene perfluoroalkyl derivatives and their embedding in a polymethylmethacrylate matrix: a spectroscopic and structural study. Journal of Materials Chemistry C, 2014, 2, 7722-7730.	2.7	2
52	Determination of selected polyaromatic hydrocarbons by gas chromatography–mass spectrometry for the analysis of wood to establish the cause of sinking of an old vessel (Scauri wreck) by fire. Microchemical Journal, 2014, 117, 116-121.	2.3	44
53	Micro-analytical identification of the components of varnishes from South Italian historical musical instruments by PLM, ESEM–EDX, microFTIR, GC–MS, and Py–GC–MS. Microchemical Journal, 2014, 116, 31-40.	2.3	19
54	Consolidation and protection by nanolime: Recent advances for the conservation of the graffiti, Carceri dello Steri Palermo and of the 18th century lunettes, SS. Giuda e Simone Cloister, Corniola (Empoli). Journal of Cultural Heritage, 2014, 15, 151-158.	1.5	47

#	Article	IF	CITATIONS
55	Influence of the modification, induced by zirconia nanoparticles, on the structure and properties of polycarbonate. European Polymer Journal, 2013, 49, 2022-2030.	2.6	27
56	Effect of the cerium loading on the HMS structure. Preparation, characterization and catalytic properties. Catalysis Communications, 2013, 36, 10-15.	1.6	7
57	Green Synthesis, Molecular Characterization and Associative Behavior of Some Gemini Surfactants without a Spacer Group. Materials, 2013, 6, 1506-1519.	1.3	13
58	Morphology, mechanical properties and thermal degradation kinetics of PMMA-zirconia nanocomposites prepared by melt compounding. EXPRESS Polymer Letters, 2012, 6, 871-881.	1.1	47
59	Identification Techniques II. Lecture Notes in Quantum Chemistry II, 2012, , 91-161.	0.3	0
60	The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of polycarbonate. Composites Science and Technology, 2012, 73, 34-39.	3.8	44
61	Micro-X-Ray Fluorescence and the Old Masters. Applied Physics A: Materials Science and Processing, 2012, 107, 197-202.	1.1	11
62	Influence of Temperature on Calcium Hydroxyapatite Nanopowders. Advances in Nanoparticles, 2012, 01, 21-28.	0.3	30
63	MCM-41-CdS nanoparticle composite material: Preparation and characterization. Microporous and Mesoporous Materials, 2010, 128, 101-107.	2.2	23
64	Ce:YAG Nanoparticles Embedded in a PMMA Matrix: Preparation and Characterization. Langmuir, 2010, 26, 13442-13449.	1.6	60
65	Synthesis of Nd:YAG nanopowder using the citrate method with microwave irradiation. Journal of Alloys and Compounds, 2010, 491, 737-741.	2.8	45
66	Structural Characterization of Zirconia Nanoparticles Prepared by Microwave-Hydrothermal Synthesis. Journal of Dispersion Science and Technology, 2009, 30, 1511-1516.	1.3	10
67	Effect of the dopant selection (Er, Eu, Nd or Ce) and its quantity on the formation of yttrium aluminum garnet nanopowders. Optical Materials, 2008, 31, 261-267.	1.7	46
68	Preparation of Nd:YAG Nanopowder in a Confined Environment. Langmuir, 2007, 23, 3947-3952.	1.6	35
69	Energy Dispersive X-Ray Diffraction Potentiality in the Field of Cultural Heritage: Simultaneous Structural and Elemental Analysis of Various Artefacts. Annali Di Chimica, 2007, 97, 473-490.	0.6	1
70	Micelles in Mixtures of Sodium Dodecyl Sulfate and a Bolaform Surfactant. Langmuir, 2006, 22, 6001-6009.	1.6	18
71	Microwave-assisted synthesis of anhydrous CdS nanoparticles in a water–oil microemulsion. Journal of Colloid and Interface Science, 2006, 304, 413-418.	5.0	32
72	Luminescence Properties of Neodymium-Doped Yttrium Aluminium Garnet Obtained by the Co-Precipitation Method Combined with the Mechanical Process. Solid State Phenomena, 2005, 106, 7-16.	0.3	17

5

Delia Chillura Martino

#	Article	IF	CITATIONS
73	Partitioning of Macrocyclic Compounds in a Cationic and an Anionic Micellar Solution:Â A Small-Angle Neutron Scattering Study. Langmuir, 2004, 20, 3854-3862.	1.6	8
74	Structural and Transport Properties of Bola C-16 Micelles in Water and in Aqueous Electrolyte Solutions. Journal of Physical Chemistry B, 2004, 108, 1214-1223.	1.2	12
75	Synthesis, size control, and passivation of CdS nanoparticles in water/AOT/n-heptane microemulsions. Materials Science and Engineering C, 2003, 23, 531-539.	3.8	54
76	Formation of α-ω(4,7,10,13-pentaoxa-16-azacyclooctadecane) hexadecane micelles in aqueous solution – effect of HCl addition. Journal of Applied Crystallography, 2003, 36, 753-757.	1.9	4
77	Structural effects of macrocyclic compounds and their partition in sodium dodecylsulphate aqueous solutions. Journal of Applied Crystallography, 2003, 36, 562-567.	1.9	5
78	Structure of Urea Clusters Confined in AOT Reversed Micelles. Langmuir, 2003, 19, 4913-4922.	1.6	26
79	Molecular Association of a Nonionic and an Ionic-Induced Surfactant:Â Cryptand (221D) NaCl in Water. Langmuir, 2003, 19, 554-558.	1.6	2
80	1H and19F NMR Investigation on Mixed Hydrocarbonâ^'Fluorocarbon Micelles. Journal of Physical Chemistry B, 2003, 107, 10048-10056.	1.2	53
81	FT-IR and dielectric study of water/AOT liquid crystals. Journal of Molecular Structure, 2000, 522, 165-178.	1.8	29
82	Determination of the Composition of Mixed Hydrogenated and Fluorinated Micelles by Small Angle Neutron Scattering. Journal of Physical Chemistry B, 1997, 101, 9525-9531.	1.2	25
83	Alcohol Partition in a Water-in-Oil Microemulsion:Â Small-Angle Neutron-Scattering Contrast Measurements. Journal of Physical Chemistry B, 1997, 101, 7139-7146.	1.2	12
84	Localization ofn-Alcohols and Structural Effects in Aqueous Solutions of Sodium Dodecyl Sulfate. Langmuir, 1997, 13, 3277-3283.	1.6	87
85	The Morphology of Block Copolymer Micelles in Supercritical Carbon Dioxide by Small-Angle Neutron and X-ray Scattering. Journal of Applied Crystallography, 1997, 30, 690-695.	1.9	37
86	Small angle neutron scattering studies of critical phenomena in a three-component microemulsion. Progress in Colloid and Polymer Science, 1997, 106, 104-107.	0.5	2
87	Design of Nonionic Surfactants for Supercritical Carbon Dioxide. Science, 1996, 274, 2049-2052.	6.0	268
88	Neutron scattering characterization of homopolymers and graft-copolymer micelles in supercritical carbon dioxide. Journal of Molecular Structure, 1996, 383, 3-10.	1.8	61
89	Small angle scattering study of the structure of isotactic polypropylene-hydrogenated oligo(cyclopentadiene) blends. Journal of Molecular Structure, 1996, 383, 75-79.	1.8	14
90	Application of the small-angle neutron scattering technique to the study of solubilization mechanisms of organic molecules by micellar systems. Journal of Molecular Structure, 1996, 383, 133-143.	1.8	11

#	Article	IF	CITATIONS
91	Micelles formed from photochemically active amphiphiles: structural characterization by small-angle neutron scattering. Journal of Molecular Structure, 1996, 383, 191-196.	1.8	1
92	Effect of Crown Ether 1,4,7,10,13,16-Hexaoxacyclooctadecane on the Structure of Sodium Dodecyl Sulfate and Dodecyltrimethylammonium Bromide Aqueous Micellar Solutions. Langmuir, 1995, 11, 2464-2470.	1.6	29
93	Fluorinated, protonated, and mixed surfactant solutions: a small-angle neutron scattering study. Langmuir, 1993, 9, 1193-1200.	1.6	41
94	Molecular association of cryptand 221D in NaCl-water solutions. A small-angle neutron scattering study. European Physical Journal Special Topics, 1993, 03, C8-173-C8-176.	0.2	1