Ji-Zheng He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6783479/publications.pdf Version: 2024-02-01

		10351	13338
305	21,601	72	130
papers	citations	h-index	g-index
	014		1 4 9 9 9
314	314	314	14303
all docs	docs citations	times ranked	citing authors

IL-7HENC HE

#	Article	IF	CITATIONS
1	Quantitative analyses of the abundance and composition of ammoniaâ€oxidizing bacteria and ammoniaâ€oxidizing archaea of a Chinese upland red soil under longâ€term fertilization practices. Environmental Microbiology, 2007, 9, 2364-2374.	1.8	877
2	Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2009, 2, 621-624.	5.4	735
3	Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME Journal, 2012, 6, 1032-1045.	4.4	614
4	Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology and Evolution, 2020, 4, 210-220.	3.4	543
5	Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 2015, 39, 729-749.	3.9	530
6	Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME Journal, 2013, 7, 1310-1321.	4.4	515
7	Abundance and composition of ammoniaâ€oxidizing bacteria and ammoniaâ€oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology, 2008, 10, 1601-1611.	1.8	508
8	Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments, 2014, 14, 538-548.	1.5	448
9	Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiology Ecology, 2010, 72, 386-394.	1.3	419
10	Host selection shapes crop microbiome assembly and network complexity. New Phytologist, 2021, 229, 1091-1104.	3.5	349
11	Ammoniaâ€oxidizing archaea: important players in paddy rhizosphere soil?. Environmental Microbiology, 2008, 10, 1978-1987.	1.8	340
12	Autotrophic ammonia oxidation by soil thaumarchaea. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17240-17245.	3.3	305
13	Effects of Cd and Pb on soil microbial community structure and activities. Environmental Science and Pollution Research, 2010, 17, 288-296.	2.7	304
14	Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environment International, 2019, 130, 104912.	4.8	278
15	Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome, 2019, 7, 33.	4.9	278
16	Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biology and Biochemistry, 2012, 55, 146-154.	4.2	268
17	Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry, 2020, 141, 107686.	4.2	247
18	Long-Term Nickel Contamination Increases the Occurrence of Antibiotic Resistance Genes in Agricultural Soils. Environmental Science & Technology, 2017, 51, 790-800.	4.6	240

#	Article	IF	CITATIONS
19	pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. Journal of Soils and Sediments, 2013, 13, 1439-1449.	1.5	219
20	Fieldâ€based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environmental Microbiology, 2016, 18, 3896-3909.	1.8	216
21	Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. Journal of Soils and Sediments, 2017, 17, 2709-2717.	1.5	194
22	A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Frontiers in Microbiology, 2012, 3, 296.	1.5	191
23	Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. Science of the Total Environment, 2018, 612, 1300-1310.	3.9	190
24	Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies?. ISME Journal, 2008, 2, 254-264.	4.4	182
25	Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China. Journal of Soils and Sediments, 2008, 8, 43-50.	1.5	177
26	Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. Journal of Soils and Sediments, 2008, 8, 349-358.	1.5	170
27	Altitudinal Distribution Patterns of Soil Bacterial and Archaeal Communities Along Mt. Shegyla on the Tibetan Plateau. Microbial Ecology, 2015, 69, 135-145.	1.4	166
28	Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environmental Pollution, 2017, 231, 1621-1632.	3.7	166
29	Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome, 2021, 9, 171.	4.9	164
30	Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. Journal of Environmental Sciences, 2007, 19, 834-840.	3.2	160
31	Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Applied Soil Ecology, 2010, 46, 119-124.	2.1	158
32	Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiology Ecology, 2009, 70, 208-217.	1.3	155
33	Phylogenetic clustering increases with elevation for microbes. Environmental Microbiology Reports, 2012, 4, 217-226.	1.0	144
34	Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil Biology and Biochemistry, 2019, 138, 107609.	4.2	143
35	Multivariate geostatistical analysis of heavy metals in topsoils from Beijing, China. Journal of Soils and Sediments, 2008, 8, 51-58.	1.5	136
36	Effects of organic acids on copper and cadmium desorption from contaminated soils. Environment International, 2003, 29, 613-618.	4.8	135

#	Article	IF	CITATIONS
37	New insights into the role of microbial community composition in driving soil respiration rates. Soil Biology and Biochemistry, 2018, 118, 35-41.	4.2	134
38	Rare taxa maintain the stability of crop mycobiomes and ecosystem functions. Environmental Microbiology, 2021, 23, 1907-1924.	1.8	132
39	Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biology and Biochemistry, 2018, 126, 114-122.	4.2	129
40	Adsorbent materials for ammonium and ammonia removal: A review. Journal of Cleaner Production, 2021, 283, 124611.	4.6	129
41	DETERMINATION OF THE POINT-OF-ZERO CHARGE OF MANGANESE OXIDES WITH DIFFERENT METHODS INCLUDING AN IMPROVED SALT TITRATION METHOD. Soil Science, 2008, 173, 277-286.	0.9	123
42	Nitrous oxide emissions from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia-oxidizing bacteria and archaea. Journal of Soils and Sediments, 2010, 10, 943-954.	1.5	122
43	Analysis of the Microbial Community Structure by Monitoring an Hg Methylation Gene (<i>hgcA</i>) in Paddy Soils along an Hg Gradient. Applied and Environmental Microbiology, 2014, 80, 2874-2879.	1.4	119
44	Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite. Chemosphere, 2014, 99, 239-247.	4.2	119
45	Contrasting patterns and drivers of soil bacterial and fungal diversity across a mountain gradient. Environmental Microbiology, 2020, 22, 3287-3301.	1.8	119
46	Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environment International, 2020, 140, 105766.	4.8	114
47	Soil pH determines the alpha diversity but not beta diversity of soil fungal community along altitude in a typical Tibetan forest ecosystem. Journal of Soils and Sediments, 2015, 15, 1224-1232.	1.5	112
48	Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems. Environmental Microbiology, 2015, 17, 444-461.	1.8	111
49	Ammonia-Oxidizing Archaea Play a Predominant Role in Acid Soil Nitrification. Advances in Agronomy, 2014, , 261-302.	2.4	109
50	Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China. Microbiome, 2018, 6, 183.	4.9	109
51	Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. FEMS Microbiology Ecology, 2016, 92, fiv169.	1.3	108
52	Unraveling Microbial Communities Associated with Methylmercury Production in Paddy Soils. Environmental Science & Technology, 2018, 52, 13110-13118.	4.6	106
53	Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil. Biology and Fertility of Soils, 2011, 47, 323-331.	2.3	102
54	Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland. Journal of Soils and Sediments, 2011, 11, 1243-1252.	1.5	100

#	Article	IF	CITATIONS
55	Characteristics of oxytetracycline sorption and potential bioavailability in soils with various physical–chemical properties. Chemosphere, 2012, 87, 542-548.	4.2	98
56	Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biology and Biochemistry, 2017, 107, 10-18.	4.2	95
57	Putative ammoniaâ€oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns. Environmental Microbiology Reports, 2010, 2, 304-312.	1.0	92
58	Contrasting Euryarchaeota communities between upland and paddy soils exhibited similar pH-impacted biogeographic patterns. Soil Biology and Biochemistry, 2013, 64, 18-27.	4.2	92
59	Effects of climate warming and elevated CO 2 on autotrophic nitrification and nitrifiers in dryland ecosystems. Soil Biology and Biochemistry, 2016, 92, 1-15.	4.2	92
60	Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiology Ecology, 2012, 80, 146-158.	1.3	91
61	Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. Journal of Soils and Sediments, 2008, 8, 406-414.	1.5	90
62	Effects of the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate on Nitrification and Nitrifiers in Two Contrasting Agricultural Soils. Applied and Environmental Microbiology, 2016, 82, 5236-5248.	1.4	90
63	Trends and challenges in soil research 2009: linking global climate change to local long-term forest productivity. Journal of Soils and Sediments, 2009, 9, 83-88.	1.5	86
64	Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil. Science of the Total Environment, 2013, 465, 125-135.	3.9	83
65	Clobal homogenization of the structure and function in the soil microbiome of urban greenspaces. Science Advances, 2021, 7, .	4.7	83
66	Soil type determines the abundance and community structure of ammonia-oxidizing bacteria and archaea in flooded paddy soils. Journal of Soils and Sediments, 2010, 10, 1510-1516.	1.5	82
67	Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils. Soil Biology and Biochemistry, 2015, 91, 212-221.	4.2	82
68	Biogenic Mn oxides for effective adsorption of Cd from aquatic environment. Environmental Pollution, 2009, 157, 2577-2583.	3.7	81
69	Kinetics of soil cadmium desorption under simulated acid rain. Ecological Complexity, 2009, 6, 432-437.	1.4	81
70	Abundance and community structure of ammonia-oxidizing bacteria and archaea in a temperate forest ecosystem under ten-years elevated CO2. Soil Biology and Biochemistry, 2012, 46, 163-171.	4.2	81
71	Microbial communities in crop phyllosphere and root endosphere are more resistant than soil microbiota to fertilization. Soil Biology and Biochemistry, 2021, 153, 108113.	4.2	81
72	Adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations: Implications for the relative contributions of different ammonia oxidizers to soil nitrogen cycling. Science of the Total Environment, 2019, 668, 224-233.	3.9	79

#	Article	IF	CITATIONS
73	Effects of Cellular Sorption on Mercury Bioavailability and Methylmercury Production by <i>Desulfovibrio desulfuricans</i> ND132. Environmental Science & Technology, 2016, 50, 13335-13341.	4.6	78
74	Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia. Environmental Pollution, 2016, 211, 48-57.	3.7	78
75	Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biology and Biochemistry, 2017, 107, 208-217.	4.2	78
76	Fertilization changes soil microbiome functioning, especially phagotrophic protists. Soil Biology and Biochemistry, 2020, 148, 107863.	4.2	78
77	Heterogeneity of archaeal and bacterial ammoniaâ€oxidizing communities in Lake Taihu, China. Environmental Microbiology Reports, 2010, 2, 569-576.	1.0	77
78	Arsenic and cadmium as predominant factors shaping the distribution patterns of antibiotic resistance genes in polluted paddy soils. Journal of Hazardous Materials, 2020, 389, 121838.	6.5	77
79	Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers. Frontiers in Microbiology, 2017, 8, 945.	1.5	76
80	Nitrifierâ€induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4â€dimethylpyrazole phosphate. Environmental Microbiology, 2017, 19, 4851-4865.	1.8	75
81	Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biology and Biochemistry, 2009, 41, 687-694.	4.2	74
82	Patterns of Bacterial Diversity Along a Long-Term Mercury-Contaminated Gradient in the Paddy Soils. Microbial Ecology, 2014, 68, 575-583.	1.4	72
83	Analyses of soil fungal communities in adjacent natural forest and hoop pine plantation ecosystems of subtropical Australia using molecular approaches based on 18S rRNA genes. FEMS Microbiology Letters, 2005, 247, 91-100.	0.7	70
84	Response of denitrification genes nirS, nirK, and nosZ to irrigation water quality in a Chinese agricultural soil. Environmental Science and Pollution Research, 2011, 18, 1644-1652.	2.7	70
85	The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors. Frontiers in Microbiology, 2015, 6, 938.	1.5	70
86	Effects of regenerating vegetation on soil enzyme activity and microbial structure in reclaimed soils on a surface coal mine site. Applied Soil Ecology, 2015, 87, 56-62.	2.1	70
87	Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nature Ecology and Evolution, 2017, 1, 1339-1347.	3.4	70
88	The effect of temperature and moisture on the source of N2O and contributions from ammonia oxidizers in an agricultural soil. Biology and Fertility of Soils, 2017, 53, 141-152.	2.3	69
89	Molecular bacterial diversity of a forest soil under residue management regimes in subtropical Australia. FEMS Microbiology Ecology, 2006, 55, 38-47.	1.3	66
90	A lysimeter study of nitrate leaching from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia oxidizing bacteria and archaea. Soil Use and Management, 2009, 25, 454-461.	2.6	66

#	Article	IF	CITATIONS
91	Abundance and community structure of ammonia oxidizing bacteria and archaea in a Sweden boreal forest soil under 19-year fertilization and 12-year warming. Journal of Soils and Sediments, 2012, 12, 1124-1133.	1.5	66
92	Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China. Environmental Microbiology Reports, 2016, 8, 1048-1057.	1.0	66
93	Pre-lysis washing improves DNA extraction from a forest soil. Soil Biology and Biochemistry, 2005, 37, 2337-2341.	4.2	65
94	Nitrogen fertiliser-induced changes in N2O emissions are attributed more to ammonia-oxidising bacteria rather than archaea as revealed using 1-octyne and acetylene inhibitors in two arable soils. Biology and Fertility of Soils, 2016, 52, 1163-1171.	2.3	65
95	COMPETITIVE ADSORPTION OF SULFATE AND OXALATE ON GOETHITE IN THE ABSENCE OR PRESENCE OF PHOSPHATE. Soil Science, 1999, 164, 180-189.	0.9	65
96	Dissimilatory nitrate reduction to ammonium dominates nitrate reduction in long-term low nitrogen fertilized rice paddies. Soil Biology and Biochemistry, 2019, 131, 149-156.	4.2	64
97	Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. Science of the Total Environment, 2020, 705, 135882.	3.9	63
98	Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environmental Science and Pollution Research, 2010, 17, 1237-1244.	2.7	62
99	Effects of super-absorbent polymers on a soil–wheat (Triticum aestivum L.) system in the field. Applied Soil Ecology, 2014, 73, 58-63.	2.1	62
100	Nitrification Is a Primary Driver of Nitrous Oxide Production in Laboratory Microcosms from Different Land-Use Soils. Frontiers in Microbiology, 2016, 7, 1373.	1.5	62
101	Diversity and potential biogeochemical impacts of viruses in bulk and rhizosphere soils. Environmental Microbiology, 2021, 23, 588-599.	1.8	62
102	Responses of soil nitrous oxide production and abundances and composition of associated microbial communities to nitrogen and water amendment. Biology and Fertility of Soils, 2017, 53, 601-611.	2.3	61
103	Deterministic selection dominates microbial community assembly in termite mounds. Soil Biology and Biochemistry, 2021, 152, 108073.	4.2	60
104	Bacterial Communities Inside and Surrounding Soil Iron-Manganese Nodules. Geomicrobiology Journal, 2008, 25, 14-24.	1.0	59
105	Niche differentiation of clade A comammox Nitrospira and canonical ammonia oxidizers in selected forest soils. Soil Biology and Biochemistry, 2020, 149, 107925.	4.2	59
106	Effects of 3,4-dimethylpyrazole phosphate (DMPP) on nitrification and the abundance and community composition of soil ammonia oxidizers in three land uses. Biology and Fertility of Soils, 2016, 52, 927-939.	2.3	56
107	Influence of rice straw amendment on mercury methylation and nitrification in paddy soils. Environmental Pollution, 2016, 209, 53-59.	3.7	56
108	Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: Field 15N tracer studies. Soil and Tillage Research, 2020, 197, 104498.	2.6	56

#	Article	IF	CITATIONS
109	Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Science of the Total Environment, 2020, 734, 139479.	3.9	56
110	Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environmental Microbiology, 2018, 20, 3186-3200.	1.8	55
111	Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Global Change Biology, 2021, 27, 5976-5988.	4.2	55
112	Linking soil bacterial diversity to ecosystem multifunctionality using backward-elimination boosted trees analysis. Journal of Soils and Sediments, 2009, 9, 547-554.	1.5	54
113	Multiple factors drive the abundance and diversity of the diazotrophic community in typical farmland soils of China. FEMS Microbiology Ecology, 2019, 95, .	1.3	54
114	Salinity as a predominant factor modulating the distribution patterns of antibiotic resistance genes in ocean and river beach soils. Science of the Total Environment, 2019, 668, 193-203.	3.9	54
115	Manure application increases microbiome complexity in soil aggregate fractions: Results of an 18-year field experiment. Agriculture, Ecosystems and Environment, 2021, 307, 107249.	2.5	54
116	The effect of nitrification inhibitors in reducing nitrification and the ammonia oxidizer population in three contrasting soils. Journal of Soils and Sediments, 2015, 15, 1113-1118.	1.5	53
117	Large-scale patterns of soil antibiotic resistome in Chinese croplands. Science of the Total Environment, 2020, 712, 136418.	3.9	53
118	Fertilization alters protistan consumers and parasites in cropâ€associated microbiomes. Environmental Microbiology, 2021, 23, 2169-2183.	1.8	52
119	Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 2022, 52, 4308-4324.	6.6	52
120	Oxytetracycline and Ciprofloxacin Exposure Altered the Composition of Protistan Consumers in an Agricultural Soil. Environmental Science & Technology, 2020, 54, 9556-9563.	4.6	51
121	Potential of indigenous crop microbiomes for sustainable agriculture. Nature Food, 2021, 2, 233-240.	6.2	51
122	Do water regimes affect ironâ€plaque formation and microbial communities in the rhizosphere of paddy rice?. Journal of Plant Nutrition and Soil Science, 2008, 171, 193-199.	1.1	50
123	Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems. Scientific Reports, 2016, 6, 19561.	1.6	50
124	Frontiers in the microbial processes of ammonia oxidation in soils and sediments. Journal of Soils and Sediments, 2014, 14, 1023-1029.	1.5	49
125	Immediate effects of nitrogen, phosphorus, and potassium amendments on the methanotrophic activity and abundance in a Chinese paddy soil under short-term incubation experiment. Journal of Soils and Sediments, 2013, 13, 189-196.	1.5	48
126	Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of northern China. Journal of Soils and Sediments, 2015, 15, 694-704.	1.5	48

#	Article	IF	CITATIONS
127	Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils. Frontiers in Microbiology, 2015, 6, 31.	1.5	47
128	The influence of soil age on ecosystem structure and function across biomes. Nature Communications, 2020, 11, 4721.	5.8	47
129	Succession of plant and soil microbial communities with restoration of abandoned land in the Loess Plateau, China. Journal of Soils and Sediments, 2013, 13, 760-769.	1.5	46
130	Differentiated Mechanisms of Biochar Mitigating Straw-Induced Greenhouse Gas Emissions in Two Contrasting Paddy Soils. Frontiers in Microbiology, 2018, 9, 2566.	1.5	46
131	Niche differentiation of comammox Nitrospira and canonical ammonia oxidizers in soil aggregate fractions following 27-year fertilizations. Agriculture, Ecosystems and Environment, 2020, 304, 107147.	2.5	46
132	Linkage between community diversity of sulfate-reducing microorganisms and methylmercury concentration in paddy soil. Environmental Science and Pollution Research, 2014, 21, 1339-1348.	2.7	45
133	Initial Copper Stress Strengthens the Resistance of Soil Microorganisms to a Subsequent Copper Stress. Microbial Ecology, 2014, 67, 931-941.	1.4	44
134	Influence of temperature and moisture on the relative contributions of heterotrophic and autotrophic nitrification to gross nitrification in an acid cropping soil. Journal of Soils and Sediments, 2015, 15, 2304-2309.	1.5	44
135	Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil. Chemosphere, 2017, 172, 286-293.	4.2	44
136	Time-dependent shifts in populations and activity of bacterial and archaeal ammonia oxidizers in response to liming in acidic soils. Soil Biology and Biochemistry, 2017, 112, 77-89.	4.2	44
137	Mercury in soils of three agricultural experimental stations with long-term fertilization in China. Chemosphere, 2008, 72, 1274-1278.	4.2	43
138	Effect of Long-Term Application of Chemical Fertilizers on Microbial Biomass and Functional Diversity of a Black Soil. Pedosphere, 2008, 18, 801-808.	2.1	42
139	Antibiotic resistance in urban green spaces mirrors the pattern of industrial distribution. Environment International, 2019, 132, 105106.	4.8	42
140	Change of bacterial communities in sediments along Songhua River in Northeastern China after a nitrobenzene pollution event. FEMS Microbiology Ecology, 2008, 65, 494-503.	1.3	41
141	Effect of 7-year application of a nitrification inhibitor, dicyandiamide (DCD), on soil microbial biomass, protease and deaminase activities, and the abundance of bacteria and archaea in pasture soils. Journal of Soils and Sediments, 2013, 13, 753-759.	1.5	41
142	Biodegradation of pyrene and catabolic genes in contaminated soils cultivated with Lolium multiflorum L. Journal of Soils and Sediments, 2009, 9, 482-491.	1.5	40
143	The effect of soil pH and dicyandiamide (DCD) on N2O emissions and ammonia oxidiser abundance in a stimulated grazed pasture soil. Journal of Soils and Sediments, 2014, 14, 1434-1444.	1.5	40
144	Species identity of biocrust-forming lichens drives the response of soil nitrogen cycle to altered precipitation frequency and nitrogen amendment. Soil Biology and Biochemistry, 2016, 96, 128-136.	4.2	40

#	Article	IF	CITATIONS
145	Microbial nitrous oxide emissions in dryland ecosystems: mechanisms, microbiome and mitigation. Environmental Microbiology, 2017, 19, 4808-4828.	1.8	40
146	Sorption mechanism and distribution of cadmium by different microbial species. Journal of Environmental Management, 2019, 237, 552-559.	3.8	40
147	Ecological Drivers of Biogeographic Patterns of Soil Archaeal Community. PLoS ONE, 2013, 8, e63375.	1.1	39
148	Response of ammonia oxidizing microbes to the stresses of arsenic and copper in two acidic alfisols. Applied Soil Ecology, 2014, 77, 59-67.	2.1	39
149	Nitrogen Addition Decreases Dissimilatory Nitrate Reduction to Ammonium in Rice Paddies. Applied and Environmental Microbiology, 2018, 84, .	1.4	39
150	Distributions and environmental drivers of archaea and bacteria in paddy soils. Journal of Soils and Sediments, 2019, 19, 23-37.	1.5	39
151	Growth of comammox Nitrospira is inhibited by nitrification inhibitors in agricultural soils. Journal of Soils and Sediments, 2020, 20, 621-628.	1.5	38
152	Adsorption (AsIII,V) and oxidation (AsIII) of arsenic by pedogenic Fe–Mn nodules. Geoderma, 2006, 136, 566-572.	2.3	36
153	Quantitative analyses of the abundance and composition of ammoniaâ€oxidizing bacteria and ammoniaâ€oxidizing archaea of a Chinese upland red soil under longâ€ŧerm fertilization practices. Environmental Microbiology, 2007, 9, 3152-3152.	1.8	36
154	Response of bacterial pdo1, nah, and C12O genes to aged soil PAH pollution in a coke factory area. Environmental Science and Pollution Research, 2014, 21, 9754-9763.	2.7	36
155	Response of ammonia oxidizers and denitrifiers to repeated applications of a nitrification inhibitor and a urease inhibitor in two pasture soils. Journal of Soils and Sediments, 2017, 17, 974-984.	1.5	36
156	15N2 as a tracer of biological N2 fixation: A 75-year retrospective. Soil Biology and Biochemistry, 2017, 106, 36-50.	4.2	36
157	Rare earth oxide nanoparticles promote soil microbial antibiotic resistance by selectively enriching antibiotic resistance genes. Environmental Science: Nano, 2019, 6, 456-466.	2.2	36
158	Enhanced nitrogen retention by lignite during poultry litter composting. Journal of Cleaner Production, 2020, 277, 122422.	4.6	36
159	Effects of super absorbent polymers on soil microbial properties and Chinese cabbage (Brassica) Tj ETQq1 1 0.7	84314 rgE 1.5	BT /9yerlock
160	Fates and Use Efficiency of Nitrogen Fertilizer in Maize Cropping Systems and Their Responses to Technologies and Management Practices: A Global Analysis on Field ¹⁵ N Tracer Studies. Earth's Future, 2021, 9, e2020EF001514.	2.4	34
161	Distinct factors drive the diversity and composition of protistan consumers and phototrophs in natural soil ecosystems. Soil Biology and Biochemistry, 2021, 160, 108317.	4.2	34
162	Niche specialization of comammox <i>Nitrospira</i> in terrestrial ecosystems: Oligotrophic or copiotrophic?. Critical Reviews in Environmental Science and Technology, 2023, 53, 161-176.	6.6	34

#	Article	IF	CITATIONS
163	The Spatial Factor, Rather than Elevated CO ₂ , Controls the Soil Bacterial Community in a Temperate Forest Ecosystem. Applied and Environmental Microbiology, 2010, 76, 7429-7436.	1.4	33
164	Long-Term Rice and Green Manure Rotation Alters the Endophytic Bacterial Communities of the Rice Root. Microbial Ecology, 2013, 66, 917-926.	1.4	33
165	Temporal dynamics of fungal communities in soybean rhizosphere. Journal of Soils and Sediments, 2017, 17, 491-498.	1.5	33
166	Functional assembly of bacterial communities with activity for the biodegradation of an organophosphorus pesticide in the rape phyllosphere. FEMS Microbiology Letters, 2010, 306, 135-143.	0.7	32
167	Climatic factors have unexpectedly strong impacts on soil bacterial β-diversity in 12 forest ecosystems. Soil Biology and Biochemistry, 2020, 142, 107699.	4.2	32
168	Modification of naturally abundant resources for remediation of potentially toxic elements: A review. Journal of Hazardous Materials, 2022, 421, 126755.	6.5	32
169	Genetic and functional diversity of ubiquitous DNA viruses in selected Chinese agricultural soils. Scientific Reports, 2017, 7, 45142.	1.6	31
170	Soil aggregate size and long-term fertilization effects on the function and community of ammonia oxidizers. Geoderma, 2019, 338, 107-117.	2.3	31
171	Fate of antibiotic resistance genes during high-solid anaerobic co-digestion of pig manure with lignite. Bioresource Technology, 2020, 303, 122906.	4.8	30
172	Microbial DNA extraction and analyses of soil iron–manganese nodules. Soil Biology and Biochemistry, 2008, 40, 1364-1369.	4.2	29
173	Candidatus Brocadia and Candidatus Kuenenia predominated in anammox bacterial community in selected Chinese paddy soils. Journal of Soils and Sediments, 2015, 15, 1977-1986.	1.5	29
174	Host Species and Geography Differentiate Honeybee Gut Bacterial Communities by Changing the Relative Contribution of Community Assembly Processes. MBio, 2021, 12, e0075121.	1.8	29
175	Environmental Filtering Process Has More Important Roles than Dispersal Limitation in Shaping Large-Scale Prokaryotic Beta Diversity Patterns of Grassland Soils. Microbial Ecology, 2016, 72, 221-230.	1.4	28
176	Interactive effects of multiple climate change factors on ammonia oxidizers and denitrifiers in a temperate steppe. FEMS Microbiology Ecology, 2017, 93, .	1.3	28
177	The biogeography of fungal communities in paddy soils is mainly driven by geographic distance. Journal of Soils and Sediments, 2018, 18, 1795-1805.	1.5	28
178	Carbon/nitrogen ratio as a major factor for predicting the effects of organic wastes on soil bacterial communities assessed by DNA-based molecular techniques. Environmental Science and Pollution Research, 2010, 17, 807-815.	2.7	27
179	Archaeal community structure along a gradient of petroleum contamination in saline-alkali soil. Journal of Environmental Sciences, 2011, 23, 1858-1864.	3.2	27
180	Responses of soil microbial community to nitrogen fertilizer and precipitation regimes in a semi-arid steppe. Journal of Soils and Sediments, 2018, 18, 762-774.	1.5	27

#	Article	IF	CITATIONS
181	Plant Diversity Enhances Soil Fungal Diversity and Microbial Resistance to Plant Invasion. Applied and Environmental Microbiology, 2021, 87, .	1.4	27
182	Agricultural land-use change and rotation system exert considerable influences on the soil antibiotic resistome in Lake Tai Basin. Science of the Total Environment, 2021, 771, 144848.	3.9	27
183	Ammonia-oxidizing bacteria play an important role in nitrification of acidic soils: A meta-analysis. Geoderma, 2021, 404, 115395.	2.3	27
184	Microbes influence the fractionation of arsenic in paddy soils with different fertilization regimes. Science of the Total Environment, 2009, 407, 2631-2640.	3.9	26
185	Responses of activities, abundances and community structures of soil denitrifiers to short-term mercury stress. Journal of Environmental Sciences, 2012, 24, 369-375.	3.2	26
186	Fates of 15N-labeled fertilizer in a black soil-maize system and the response to straw incorporation in Northeast China. Journal of Soils and Sediments, 2018, 18, 1441-1452.	1.5	26
187	Effects of repeated applications of urea with DMPP on ammonia oxidizers, denitrifiers, and non-targeted microbial communities of an agricultural soil in Queensland, Australia. Applied Soil Ecology, 2020, 147, 103392.	2.1	26
188	Aridity decreases soil protistan network complexity and stability. Soil Biology and Biochemistry, 2022, 166, 108575.	4.2	26
189	Shifts in the abundance and community structure of soil ammonia oxidizers in a wet sclerophyll forest under long-term prescribed burning. Science of the Total Environment, 2014, 470-471, 578-586.	3.9	25
190	Manure Application Did Not Enrich Antibiotic Resistance Genes in Root Endophytic Bacterial Microbiota of Cherry Radish Plants. Applied and Environmental Microbiology, 2020, 86, .	1.4	25
191	Niche specialization of comammox Nitrospira clade A in terrestrial ecosystems. Soil Biology and Biochemistry, 2021, 156, 108231.	4.2	25
192	Effect of Selected Organic Acids on Cadmium Sorption by Variable- and Permanent-Charge Soils. Pedosphere, 2007, 17, 117-123.	2.1	24
193	Long-term nickel exposure altered the bacterial community composition but not diversity in two contrasting agricultural soils. Environmental Science and Pollution Research, 2015, 22, 10496-10505.	2.7	24
194	Ectomycorrhizal fungi inoculation alleviates simulated acid rain effects on soil ammonia oxidizers and denitrifiers in Masson pine forest. Environmental Microbiology, 2019, 21, 299-313.	1.8	24
195	Synthesis of todorokite-type manganese oxide from Cu-buserite by controlling the pH at atmospheric pressure. Microporous and Mesoporous Materials, 2009, 117, 41-47.	2.2	23
196	Dynamics of sulfate reduction and sulfate-reducing prokaryotes in anaerobic paddy soil amended with rice straw. Biology and Fertility of Soils, 2010, 46, 283-291.	2.3	23
197	Host identity determines plant associated resistomes. Environmental Pollution, 2020, 258, 113709.	3.7	23
198	Biotic and abiotic factors distinctly drive contrasting biogeographic patterns between phyllosphere and soil resistomes in natural ecosystems. ISME Communications, 2021, 1, .	1.7	23

#	Article	IF	CITATIONS
199	Effects of the nitrification inhibitor acetylene on nitrous oxide emissions and ammonia-oxidizing microorganisms of different agricultural soils under laboratory incubation conditions. Applied Soil Ecology, 2017, 119, 80-90.	2.1	22
200	Effects of the nitrification inhibitor dicyandiamide (DCD) on N2Oemissions and the abundance of nitrifiers and denitrifiers in two contrasting agricultural soils. Journal of Soils and Sediments, 2017, 17, 1635-1643.	1.5	22
201	Impacts of long-term nitrogen addition, watering and mowing on ammonia oxidizers, denitrifiers and plant communities in a temperate steppe. Applied Soil Ecology, 2018, 130, 241-250.	2.1	22
202	Seasonal dynamics of soil microbial diversity and functions along elevations across the treeline. Science of the Total Environment, 2021, 794, 148644.	3.9	22
203	The end of hunger: fertilizers, microbes and plant productivity. Microbial Biotechnology, 2022, 15, 1050-1054.	2.0	22
204	Cr(III) oxidation coupled with Mn(II) bacterial oxidation in the environment. Journal of Soils and Sediments, 2010, 10, 767-773.	1.5	21
205	Do land utilization patterns affect methanotrophic communities in a Chinese upland red soil?. Journal of Environmental Sciences, 2010, 22, 1936-1943.	3.2	21
206	Primary Succession of Nitrogen Cycling Microbial Communities Along the Deglaciated Forelands of Tianshan Mountain, China. Frontiers in Microbiology, 2016, 7, 1353.	1.5	21
207	Copper pollution decreases the resistance of soil microbial community to subsequent dry–rewetting disturbance. Journal of Environmental Sciences, 2016, 39, 155-164.	3.2	21
208	Contrasting response of two grassland soils to N addition and moisture levels: N2O emission and functional gene abundance. Journal of Soils and Sediments, 2017, 17, 384-392.	1.5	21
209	Effects of Reaction Conditions on the Formation of Todorokite at Atmospheric Pressure. Clays and Clay Minerals, 2006, 54, 605-615.	0.6	20
210	Effects of land utilization patterns on soil microbial communities in an acid red soil based on DNA and PLFA analyses. Journal of Soils and Sediments, 2013, 13, 1223-1231.	1.5	20
211	Differential response of archaeal groups to land use change in an acidic red soil. Science of the Total Environment, 2013, 461-462, 742-749.	3.9	20
212	Fungal networks serve as novel ecological routes for enrichment and dissemination of antibiotic resistance genes as exhibited by microcosm experiments. Scientific Reports, 2017, 7, 15457.	1.6	20
213	Short-term copper exposure as a selection pressure for antibiotic resistance and metal resistance in an agricultural soil. Environmental Science and Pollution Research, 2018, 25, 29314-29324.	2.7	20
214	High-solid anaerobic co-digestion of pig manure with lignite promotes methane production. Journal of Cleaner Production, 2020, 258, 120695.	4.6	20
215	Assembly processes lead to divergent soil fungal communities within and among 12 forest ecosystems along a latitudinal gradient. New Phytologist, 2021, 231, 1183-1194.	3.5	20
216	Precipitation increases the abundance of fungal plant pathogens in <i>Eucalyptus</i> phyllosphere. Environmental Microbiology, 2021, 23, 7688-7700.	1.8	20

#	Article	IF	CITATIONS
217	Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on methanotroph abundance and methane uptake in a grazed pasture soil. Environmental Science and Pollution Research, 2013, 20, 8680-8689.	2.7	19
218	Response of ammonia-oxidizing archaea and bacteria to long-term industrial effluent-polluted soils, Gujarat, Western India. Environmental Monitoring and Assessment, 2014, 186, 4037-4050.	1.3	19
219	Nitrate production is mainly heterotrophic in an acid dairy soil with high organic content in Australia. Biology and Fertility of Soils, 2015, 51, 891-896.	2.3	19
220	Plant evenness modulates the effect of plant richness on soil bacterial diversity. Science of the Total Environment, 2019, 662, 8-14.	3.9	19
221	Lignite as additives accelerates the removal of antibiotic resistance genes during poultry litter composting. Bioresource Technology, 2020, 315, 123841.	4.8	19
222	Industrial development as a key factor explaining variances in soil and grass phyllosphere microbiomes in urban green spaces. Environmental Pollution, 2020, 261, 114201.	3.7	19
223	Dissimilatory nitrate reduction to ammonium dominates soil nitrate retention capacity in subtropical forests. Biology and Fertility of Soils, 2020, 56, 785-797.	2.3	19
224	Climate warming increases the proportions of specific antibiotic resistance genes in natural soil ecosystems. Journal of Hazardous Materials, 2022, 430, 128442.	6.5	19
225	Impacts of Projected Climate Warming and Wetting on Soil Microbial Communities in Alpine Grassland Ecosystems of the Tibetan Plateau. Microbial Ecology, 2018, 75, 1009-1023.	1.4	18
226	Characterization of the copper resistance mechanism and bioremediation potential of an Acinetobacter calcoaceticus strain isolated from copper mine sludge. Environmental Science and Pollution Research, 2020, 27, 7922-7933.	2.7	18
227	Effects of mercury on reproduction, avoidance, and heat shock protein gene expression of the soil springtail <i>Folsomia candida</i> . Environmental Toxicology and Chemistry, 2010, 29, 654-659.	2.2	17
228	Iron-Manganese Nodules Harbor Lower Bacterial Diversity and Greater Proportions of <i>Proteobacteria</i> Compared to Bulk Soils in Four Locations Spanning from North to South China. Geomicrobiology Journal, 2014, 31, 562-577.	1.0	17
229	Insight into the Modulation of Dissolved Organic Matter on Microbial Remediation of PAH-Contaminated Soils. Microbial Ecology, 2015, 70, 400-410.	1.4	17
230	Lignite ammonia adsorption and surface chemistry after dewatering. Separation and Purification Technology, 2020, 253, 117483.	3.9	17
231	Effects of Different Regeneration Scenarios and Fertilizer Treatments on Soil Microbial Ecology in Reclaimed Opencast Mining Areas on the Loess Plateau, China. PLoS ONE, 2013, 8, e63275.	1.1	17
232	Distribution of soil viruses across China and their potential role in phosphorous metabolism. Environmental Microbiomes, 2022, 17, 6.	2.2	17
233	Manipulating the soil microbiome for improved nitrogen management. Microbiology Australia, 2018, 39, 24.	0.1	16
234	Methanotroph abundance not affected by applications of animal urine and a nitrification inhibitor, dicyandiamide, in six grazed grassland soils. Journal of Soils and Sediments, 2011, 11, 432-439.	1.5	15

#	Article	IF	CITATIONS
235	Impact of microwave disinfestation treatments on the bacterial communities of noâ€ŧill agricultural soils. European Journal of Soil Science, 2020, 71, 1006-1017.	1.8	15
236	Limited effects of depth (0–80 cm) on communities of archaea, bacteria and fungi in paddy soil profiles. European Journal of Soil Science, 2020, 71, 955-966.	1.8	15
237	Differentiation of individual clusters of comammox Nitrospira in an acidic Ultisol following long-term fertilization. Applied Soil Ecology, 2022, 170, 104267.	2.1	15
238	The accumulation of microbial residues and plant lignin phenols are more influenced by fertilization in young than mature subtropical forests. Forest Ecology and Management, 2022, 509, 120074.	1.4	15
239	Different influences of field aging on nickel toxicity to Folsomia candida in two types of soil. Environmental Science and Pollution Research, 2015, 22, 8235-8241.	2.7	14
240	Harnessing microbiomeâ€based biotechnologies for sustainable mitigation of nitrous oxide emissions. Microbial Biotechnology, 2017, 10, 1226-1231.	2.0	14
241	Diversity and Distribution Characteristics of Viruses in Soils of a Marine-Terrestrial Ecotone in East China. Microbial Ecology, 2018, 75, 375-386.	1.4	14
242	Dissimilatory nitrate ammonification and N2 fixation helps maintain nitrogen nutrition in resource-limited rice paddies. Biology and Fertility of Soils, 2021, 57, 107-115.	2.3	14
243	Progress in Significant Soil Science Fields of China over the Last Three Decades: A Review. Pedosphere, 2011, 21, 1-10.	2.1	13
244	Toxicity of profenofos to the springtail, Folsomia candida, and ammonia-oxidizers in two agricultural soils. Ecotoxicology, 2012, 21, 1126-1134.	1.1	13
245	Contrasting response of nitrification capacity in three agricultural soils to N addition during short-term incubation. Journal of Soils and Sediments, 2014, 14, 1861-1868.	1.5	13
246	Responses of ureolytic and nitrifying microbes to urease and nitrification inhibitors in selected agricultural soils in Victoria, Australia. Journal of Soils and Sediments, 2020, 20, 1309-1322.	1.5	13
247	Ecological drivers of methanotrophic communities in paddy soils around mercury mining areas. Science of the Total Environment, 2020, 721, 137760.	3.9	12
248	Arbuscular mycorrhizal fungi and plant diversity drive restoration of nitrogen ycling microbial communities. Molecular Ecology, 2021, 30, 4133-4146.	2.0	12
249	Transmission of antibiotic resistance genes in agroecosystems: an overview. Frontiers of Agricultural Science and Engineering, 2020, 7, 329.	0.9	12
250	Effects of longâ€ŧerm fertilization on the diversity of bacterial mercuric reductase gene in a Chinese upland soil. Journal of Basic Microbiology, 2012, 52, 35-42.	1.8	11
251	Variation of soil nitrate and bacterial diversity along soil profiles in manure disposal maize field and adjacent woodland. Journal of Soils and Sediments, 2020, 20, 3557-3568.	1.5	11
252	Attenuation of antibiotic resistance genes in livestock manure through vermicomposting via Protaetia brevitarsis and its fate in a soil-vegetable system. Science of the Total Environment, 2022, 807, 150781.	3.9	11

#	Article	IF	CITATIONS
253	Factors governing formation of todorokite at atmospheric pressure. Science in China Series D: Earth Sciences, 2005, 48, 1678-1689.	0.9	10
254	Does long-term fertilization treatment affect the response of soil ammonia-oxidizing bacterial communities to Zn contamination?. Plant and Soil, 2007, 301, 245-254.	1.8	10
255	Effects of dicyandiamide and acetylene on N2O emissions and ammonia oxidizers in a fluvo-aquic soil applied with urea. Environmental Science and Pollution Research, 2016, 23, 23023-23033.	2.7	10
256	Longitudinal occurrence of methylmercury in terrestrial ecosystems of the Tibetan Plateau. Environmental Pollution, 2016, 218, 1342-1349.	3.7	10
257	Variability of heavy metal content in soils of typical Tibetan grasslands. RSC Advances, 2016, 6, 105398-105405.	1.7	10
258	Viral metagenomics analysis and eight novel viral genomes identified from the Dushanzi mud volcanic soil in Xinjiang, China. Journal of Soils and Sediments, 2019, 19, 81-90.	1.5	10
259	Microwave Soil Treatment Increases Soil Nitrogen Supply for Sustained Wheat Productivity. Transactions of the ASABE, 2019, 62, 355-362.	1.1	10
260	Greater promotion of DNRA rates and nrfA gene transcriptional activity by straw incorporation in alkaline than in acidic paddy soils. Soil Ecology Letters, 2020, 2, 255-267.	2.4	10
261	Specific protistan consumers and parasites are responsive to inorganic fertilization in rhizosphere and bulk soils. Journal of Soils and Sediments, 2021, 21, 3801-3812.	1.5	10
262	Modified lignite and black coal reduce ammonia volatilization from cattle manure. Journal of Environmental Management, 2022, 301, 113807.	3.8	10
263	Healthy soils for sustainable food production and environmental quality. Frontiers of Agricultural Science and Engineering, 2020, 7, 347.	0.9	10
264	Unravelling the ecological complexity of soil viromes: Challenges and opportunities. Science of the Total Environment, 2022, 812, 152217.	3.9	10
265	Calling for comprehensive explorations between soil invertebrates and arbuscular mycorrhizas. Trends in Plant Science, 2022, 27, 793-801.	4.3	10
266	Fertilization has a greater effect than rhizosphere on community structures of comammox Nitrospira in an alkaline agricultural soil. Applied Soil Ecology, 2022, 175, 104456.	2.1	10
267	Compartment and Plant Identity Shape Tree Mycobiome in a Subtropical Forest. Microbiology Spectrum, 2022, 10, .	1.2	10
268	Unique community structure of viruses in a glacier soil of the Tianshan Mountains, China. Journal of Soils and Sediments, 2017, 17, 852-860.	1.5	9
269	Distribution and Succession Feature of Antibiotic Resistance Genes Along a Soil Development Chronosequence in Urumqi No.1 Glacier of China. Frontiers in Microbiology, 2019, 10, 1569.	1.5	9
270	Livestock manure spiked with the antibiotic tylosin significantly altered soil protist functional groups. Journal of Hazardous Materials, 2022, 427, 127867.	6.5	9

#	Article	IF	CITATIONS
271	Semi-solid state promotes the methane production during anaerobic co-digestion of chicken manure with corn straw comparison to wet and high-solid state. Journal of Environmental Management, 2022, 316, 115264.	3.8	9
272	Copper Pollution Increases the Resistance of Soil Archaeal Community to Changes in Water Regime. Microbial Ecology, 2017, 74, 877-887.	1.4	8
273	Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes. Environmental Microbiology Reports, 2018, 10, 167-178.	1.0	8
274	Effect of treated farm dairy effluents, with or without animal urine, on nitrous oxide emissions, ammonia oxidisers and denitrifiers in the soil. Journal of Soils and Sediments, 2019, 19, 2330-2345.	1.5	8
275	DNA stable isotope probing revealed no incorporation of 13CO2 into comammox Nitrospira but ammonia-oxidizing archaea in a subtropical acid soil. Journal of Soils and Sediments, 2020, 20, 1297-1308.	1.5	8
276	Grazing does not increase soil antibiotic resistome in two types of grasslands in Inner Mongolia, China. Applied Soil Ecology, 2020, 155, 103644.	2.1	8
277	Termite mounds reduce soil microbial diversity by filtering rare microbial taxa. Environmental Microbiology, 2021, 23, 2659-2668.	1.8	8
278	Plant Species–Driven Distribution of Individual Clades of Comammox Nitrospira in a Subtropical Estuarine Wetland. Microbial Ecology, 2023, 85, 209-220.	1.4	8
279	Cross-biome antibiotic resistance decays after millions of years of soil development. ISME Journal, 2022, 16, 1864-1867.	4.4	8
280	Natural selenium stress influences the changes of antibiotic resistome in seleniferous forest soils. Environmental Microbiomes, 2022, 17, 26.	2.2	8
281	Modification of bituminous coal by air oxidation to increase ammonia capture. Journal of Analytical and Applied Pyrolysis, 2020, 151, 104930.	2.6	7
282	Termite mound formation reduces the abundance and diversity of soil resistomes. Environmental Microbiology, 2021, 23, 7661-7670.	1.8	7
283	Understanding the mechanisms for the lower nitrous oxide emissions from fodder beet urine compared with kale urine from dairy cows. Journal of Soils and Sediments, 2018, 18, 85-93.	1.5	6
284	Generalist Taxa Shape Fungal Community Structure in Cropping Ecosystems. Frontiers in Microbiology, 2021, 12, 678290.	1.5	6
285	Paenibacillus tibetensis sp. nov., a psychrophilic bacterium isolated from alpine swamp meadow soil. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1583-1586.	0.8	5
286	Contrasting ecological processes shape the Eucalyptus phyllosphere bacterial and fungal community assemblies. , 2022, 1, 73-83.		5
287	Distribution Characteristics of Soil Viruses Under Different Precipitation Gradients on the Qinghai-Tibet Plateau. Frontiers in Microbiology, 2022, 13, 848305.	1.5	5
288	Temperature has a strong impact on the abundance and community structure of comammox Nitrospira in an Ultisol. Journal of Soils and Sediments, 2022, 22, 2593-2603.	1.5	5

#	Article	IF	CITATIONS
289	Effect of longâ€ŧerm fertilization on total soil arsenic in China. Annals of the New York Academy of Sciences, 2010, 1195, E65-73.	1.8	4
290	Surface modification of coal tailings by thermal air oxidation for ammonia capture. Journal of Cleaner Production, 2022, 362, 132525.	4.6	4
291	Comparison of Archaeal Populations in Soil and Their Encapsulated Iron-Manganese Nodules in Four Locations Spanning from North to South China. Geomicrobiology Journal, 2017, 34, 811-822.	1.0	3
292	Environmental filtering controls soil biodiversity in wet tropical ecosystems. Soil Biology and Biochemistry, 2022, 166, 108571.	4.2	3
293	Organic fertilization regimes suppress fungal plant pathogens through modulating the resident bacterial and protistan communities. , 2022, 1, 43-53.		3
294	Molecular environmental soil science at the interfaces in the Earth's critical zone. Journal of Soils and Sediments, 2010, 10, 797-798.	1.5	2
295	Tracing boron dynamics in agro-ecosystems using enriched (¹⁰ B, ¹¹ B) stable isotopic signatures: A centennial legacy. Archives of Agronomy and Soil Science, 2022, 68, 561-578.	1.3	2
296	Temporal response of ureolytic and ammonia-oxidizing microbes and pasture yield to urea and NBPT at Leigh Creek of Victoria in Australia. Applied Soil Ecology, 2021, 164, 103922.	2.1	2
297	Arbuscular mycorrhiza fungi increase soil denitrifier abundance relating to vegetation community. Applied Soil Ecology, 2022, 171, 104325.	2.1	2
298	Proximity to subsurface drip irrigation emitters altered soil microbial communities in two commercial processing tomato fields. Applied Soil Ecology, 2022, 171, 104315.	2.1	2
299	Secondary Adsorption of Phosphate on Aluminum Oxides Surfaces as Influenced by Several Organic Acids. Journal of Plant Nutrition, 2004, 27, 637-649.	0.9	1
300	Seasonal dynamic changes in bacterial compositions in the Inner Mongolia desert steppe. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2009, 4, 187-191.	0.2	1
301	Showcasing microbial ecology research in China. FEMS Microbiology Ecology, 2009, 70, 163-164.	1.3	1
302	Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China. Environmental Microbiology, 2016, 8, 1048.	1.8	1
303	Effect of straw incorporation and nitrification inhibitor on nitrous oxide emission in three cropland soils. , 2022, 1, 132-141.		1
304	Subject Editor: Jizheng (Jim) He. Journal of Soils and Sediments, 2007, 7, 64-64.	1.5	0
305	Soil Micro-interfaces Control the Fate of Pollutants in Soil Environment. , 2010, , 317-319.		0