William Paul Unsworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6783348/publications.pdf

Version: 2024-02-01

71 papers 3,167 citations

33 h-index 54 g-index

92 all docs 92 docs citations

92 times ranked 2224 citing authors

#	Article	IF	CITATIONS
1	Indole-ynones as Privileged Substrates for Radical Dearomatizing Spirocyclization Cascades. Organic Letters, 2022, 24, 668-674.	4.6	21
2	Synthesis of medium-ring lactams and macrocyclic peptide mimetics <i>via</i> conjugate addition/ring expansion cascade reactions. RSC Chemical Biology, 2022, 3, 334-340.	4.1	12
3	Selectivity, Speciation, and Substrate Control in the Gold-Catalyzed Coupling of Indoles and Alkynes. Organometallics, 2022, 41, 497-507.	2.3	5
4	A Thiol-Mediated Three-Step Ring Expansion Cascade for the Conversion of Indoles into Functionalized Quinolines. Organic Letters, 2021, 23, 2063-2068.	4.6	18
5	Synthesis of macrocyclic and medium-sized ring thiolactones <i>via</i> the ring expansion of lactams. Organic and Biomolecular Chemistry, 2021, 19, 1404-1411.	2.8	16
6	Consecutive Ring-Expansion Reactions for the Iterative Assembly of Medium-Sized Rings and Macrocycles. Synlett, 2020, 31, 133-146.	1.8	23
7	Visible-light-induced intramolecular charge transfer in the radical spirocyclisation of indole-tethered ynones. Chemical Science, 2020, 11, 1353-1360.	7.4	87
8	Synthesis of polycyclic scaffolds via a gold-catalysed dearomative cyclisation cascade. Tetrahedron, 2020, 76, 131392.	1.9	7
9	Evaluating the Viability of Successive Ringâ€Expansions Based on Amino Acid and Hydroxyacid Sideâ€Chain Insertion. Chemistry - A European Journal, 2020, 26, 12674-12683.	3.3	23
10	Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis. ACS Catalysis, 2020, 10, 7250-7261.	11.2	112
11	lridiumâ€Catalyzed Enantioselective Intermolecular Indole C2â€Allylation. Angewandte Chemie, 2020, 132, 7668-7674.	2.0	12
12	A happy medium: the synthesis of medicinally important medium-sized rings <i>via</i> ring expansion. Chemical Science, 2020, 11, 2876-2881.	7.4	129
13	Iridiumâ€Catalyzed Enantioselective Intermolecular Indole C2â€Allylation. Angewandte Chemie - International Edition, 2020, 59, 7598-7604.	13.8	44
14	Modular Synthesis of Polycyclic Alkaloid Scaffolds via an Enantioselective Dearomative Cascade. Organic Letters, 2020, 22, 1175-1181.	4.6	38
15	Photocatalytic Deoxygenation of Sulfoxides Using Visible Light: Mechanistic Investigations and Synthetic Applications. ACS Catalysis, 2020, 10, 5814-5820.	11.2	43
16	Internal Nucleophilic Catalyst Mediated Cyclisation/Ring Expansion Cascades for the Synthesis of Medium‧ized Lactones and Lactams. Angewandte Chemie, 2019, 131, 14080-14085.	2.0	17
17	Internal Nucleophilic Catalyst Mediated Cyclisation/Ring Expansion Cascades for the Synthesis of Mediumâ€6ized Lactones and Lactams. Angewandte Chemie - International Edition, 2019, 58, 13942-13947.	13.8	51
18	A marine viral halogenase that iodinates diverse substrates. Nature Chemistry, 2019, 11, 1091-1097.	13.6	65

#	Article	lF	CITATIONS
19	Synthetic and Mechanistic Studies into the Rearrangement of Spirocyclic Indolenines into Quinolines. European Journal of Organic Chemistry, 2019, 2019, 5563-5571.	2.4	13
20	Indole Synthesis Using Silver Catalysis. Chemistry - an Asian Journal, 2019, 14, 1900-1911.	3.3	40
21	Merging π-Acid and Pd Catalysis: Dearomatizing Spirocyclization/Cross-Coupling Cascade Reactions of Alkyne-Tethered Aromatics. ACS Catalysis, 2019, 9, 504-510.	11.2	52
22	Divergent reactivity of phenol- and anisole-tethered donor-acceptor α-diazoketones. Tetrahedron, 2018, 74, 5374-5382.	1.9	10
23	Ag(I)-Catalyzed Synthesis of Azabicyclic Alkaloid Frameworks from Ketimine-Tethered Ynones: Total Synthesis of Indolizidine 209D. Organic Letters, 2018, 20, 1439-1443.	4.6	19
24	Divergent Reactivity of Indole-Tethered Ynones with Silver(I) and Gold(I) Catalysts: A Combined Synthetic and Computational Study. Synthesis, 2018, 50, 4829-4836.	2.3	21
25	Iterative Assembly of Macrocyclic Lactones using Successive Ring Expansion Reactions. Chemistry - A European Journal, 2018, 24, 13947-13953.	3.3	44
26	Dearomatizing Spiroannulation Reagents: Direct Access to Spirocycles from Indoles and Dihalides. Organic Letters, 2018, 20, 3349-3353.	4.6	34
27	Understanding the Role of Spiroindolenines in Pictet-Spengler Reactions. CheM, 2018, 4, 1767-1770.	11.7	4
28	"Back-to-Front―Indole Synthesis Using Silver(I) Catalysis: Unexpected C-3 Pyrrole Activation Mode Supported by DFT. ACS Catalysis, 2018, 8, 6844-6850.	11.2	42
29	Ringâ€Expansion Reactions in the Synthesis of Macrocycles and Mediumâ€Sized Rings. Chemistry - A European Journal, 2017, 23, 8780-8799.	3.3	200
30	Ringâ€Expansion Approach to Mediumâ€Sized Lactams and Analysis of Their Medicinal Leadâ€Like Properties. Chemistry - A European Journal, 2017, 23, 2225-2230.	3.3	67
31	Selective synthesis of three product classes from imine and carboxylic acid precursors via direct imine acylation. Organic and Biomolecular Chemistry, 2017, 15, 7527-7532.	2.8	8
32	Synthesis of Cyclic Peptide Mimetics by the Successive Ring Expansion of Lactams. Chemistry - A European Journal, 2017, 23, 13314-13318.	3.3	54
33	Frontispiece: Ringâ€Expansion Reactions in the Synthesis of Macrocycles and Mediumâ€Sized Rings. Chemistry - A European Journal, 2017, 23, .	3.3	O
34	Dearomatisation approaches to spirocyclic dienones via the electrophilic activation of alkynes. Organic and Biomolecular Chemistry, 2017, 15, 233-245.	2.8	38
35	Synthesis of Spirocyclic Indolenines. Chemistry - A European Journal, 2016, 22, 2856-2881.	3.3	273
36	Catalystâ€Driven Scaffold Diversity: Selective Synthesis of Spirocycles, Carbazoles and Quinolines from Indolyl Ynones. Chemistry - A European Journal, 2016, 22, 8777-8780.	3.3	119

#	Article	IF	CITATIONS
37	Catalytic Dearomatization Approach to Quinolizidine Alkaloids: Five Step Total Synthesis of $(\hat{A}\pm)$ -Lasubine II. Organic Letters, 2016, 18, 6256-6259.	4.6	36
38	Synthetic approaches to pallimamine and analogues using direct imine acylation. Tetrahedron, 2016, 72, 6099-6106.	1.9	9
39	From Heteroaromatic Acids and Imines to Azaspirocycles: Stereoselective Synthesis and 3D Shape Analysis. Chemistry - A European Journal, 2016, 22, 6496-6500.	3.3	55
40	Direct Imine Acylation: A Versatile Method for the Synthesis of Nitrogen-Containing Heterocycles, Spirocycles and Natural Products. Synlett, 2016, 27, 2051-2064.	1.8	23
41	Silicaâ€Supported Silver Nitrate as a Highly Active Dearomatizing Spirocyclization Catalyst: Synergistic Alkyne Activation by Silver Nanoparticles and Silica. Angewandte Chemie - International Edition, 2016, 55, 13798-13802.	13.8	89
42	Silicaâ€Supported Silver Nitrate as a Highly Active Dearomatizing Spirocyclization Catalyst: Synergistic Alkyne Activation by Silver Nanoparticles and Silica. Angewandte Chemie, 2016, 128, 14002-14006.	2.0	16
43	Phosphorylated cyclopropanes in the synthesis of \hat{l} ±-alkylidene- \hat{l} 3-butyrolactones: total synthesis of $(\hat{A}\pm)$ -savinin, $(\hat{A}\pm)$ -gadain and $(\hat{A}\pm)$ -peperomin E. Organic and Biomolecular Chemistry, 2016, 14, 8971-8988.	2.8	8
44	Preparation and Reactions of Indoleninyl Halides: Scaffolds for the Synthesis of Spirocyclic Indole Derivatives. Organic Letters, 2016, 18, 6328-6331.	4.6	71
45	Selective Synthesis of Six Products from a Single Indolyl αâ€Diazocarbonyl Precursor. Angewandte Chemie - International Edition, 2016, 55, 9671-9675.	13.8	57
46	Selective Synthesis of Six Products from a Single Indolyl αâ€Diazocarbonyl Precursor. Angewandte Chemie, 2016, 128, 9823-9827.	2.0	14
47	A selective C–H insertion/olefination protocol for the synthesis of α-methylene-γ-butyrolactone natural products. Organic and Biomolecular Chemistry, 2016, 14, 1641-1645.	2.8	16
48	The Synthesis of Structurally Diverse Macrocycles By Successive Ring Expansion. Angewandte Chemie - International Edition, 2015, 54, 15794-15798.	13.8	80
49	The Synthesis of Structurally Diverse Macrocycles By Successive Ring Expansion. Angewandte Chemie, 2015, 127, 16020-16024.	2.0	33
50	Silver(I)-Catalyzed Dearomatization of Alkyne-Tethered Indoles: Divergent Synthesis of Spirocyclic Indolenines and Carbazoles. Organic Letters, 2015, 17, 4372-4375.	4.6	120
51	Synthetic Studies towards the Africanane Sesquiterpenes via the Cope Rearrangement of gem-Dimethyl-Substituted Divinyl Cyclopropanes. Synlett, 2015, 27, 70-74.	1.8	O
52	Propylphosphonic anhydride (T3P) mediated synthesis of \hat{l}^2 -lactams from imines and aryl-substituted acetic acids. Tetrahedron Letters, 2015, 56, 3113-3116.	1.4	23
53	\hat{l} ±-Alkylidene- \hat{l} 3-butyrolactone synthesis via one-pot C–H insertion/olefination: substrate scope and the total synthesis ofÂ(±)-cedarmycins A and B. Tetrahedron, 2015, 71, 7107-7123.	1.9	23
54	Silver(I)―or Copper(II)â€Mediated Dearomatization of Aromatic Ynones: Direct Access to Spirocyclic Scaffolds. Angewandte Chemie - International Edition, 2015, 54, 7640-7643.	13.8	144

#	Article	IF	Citations
55	The total synthesis of (+)-elaeokanidine A: natural product or isolation artefact?. Tetrahedron Letters, 2015, 56, 3123-3126.	1.4	10
56	Substrate scope in the direct imine acylation of ortho-substituted benzoic acid derivatives: the total synthesis (\hat{A}_{\pm})-cavidine. Tetrahedron, 2014, 70, 7172-7180.	1.9	34
57	A One-Pot C–H Insertion/Olefination Sequence for the Formation of α-Alkylidene-γ-butyrolactones. Organic Letters, 2014, 16, 2772-2775.	4.6	22
58	Rhodium(ii)-catalysed tandem aziridination and ring-opening: stereoselective synthesis of functionalised tetrahydrofurans. Chemical Communications, 2014, 50, 11393-11396.	4.1	15
59	Substrate scope and stereocontrol in the Rh(II)-catalysed oxyamination of allylic carbamates. Tetrahedron, 2014, 70, 7388-7394.	1.9	17
60	Direct Imine Acylation for Molecular Diversity in Heterocyclic Synthesis. Journal of Organic Chemistry, 2014, 79, 1368-1376.	3.2	58
61	â€~Upenamide: trials and tribulations. Organic and Biomolecular Chemistry, 2013, 11, 7250.	2.8	17
62	The Cope rearrangement of gem-dimethyl substituted divinylcyclopropanes. Organic and Biomolecular Chemistry, 2013, 11, 7587.	2.8	19
63	Direct Imine Acylation: Rapid Access to Diverse Heterocyclic Scaffolds. Organic Letters, 2013, 15, 258-261.	4.6	86
64	Direct Imine Acylation: Synthesis of the Proposed Structures of †Upenamide. Organic Letters, 2013, 15, 262-265.	4.6	57
65	Total Synthesis of Spirobacillene A. Organic Letters, 2013, 15, 3306-3309.	4.6	87
66	An Expedient Protecting-Group-Free Total Synthesis of (\hat{A}_{\pm}) -Dievodiamine. Organic Letters, 2013, 15, 3302-3305.	4.6	30
67	Alkyne-Acetal Cyclisation Reactions Mediated by Formic Acid; 3-Acylated-2,5-dihydrofurans and Related Oxygen and Nitrogen Heterocycles. Heterocycles, 2012, 84, 1013.	0.7	10
68	Stereospecificity in the Au-catalysed cyclisation of monoallylic diols. Synthesis of (+)-isoaltholactone. Chemical Communications, 2011, 47, 7659.	4.1	42
69	Aspects of stereocontrol in the L-Selectride reduction of 4-acyl-1,3-dioxolane derivatives. Tetrahedron, 2010, 66, 2363-2372.	1.9	18
70	Radical 1,4-aryl transfer in arylcarboxamides leading to phthalimides, biaryls and enantiomerically enriched \hat{l}^2 -arylethylamines. Tetrahedron, 2008, 64, 11896-11907.	1.9	22
71	Further studies on silatropic carbonyl ene cyclisations: β-crotyl(diphenyl)silyloxy aldehyde substrates; synthesis of 2-deoxy-2-C-phenylhexoses. Organic and Biomolecular Chemistry, 2008, 6, 2628.	2.8	8