
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6783295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Stable Organic Solar Cells Based on an Ultraviolet-Resistant Cathode Interfacial Layer. CCS Chemistry, 2022, 4, 938-948.	7.8	42
2	J-aggregation enhanced thermally activated delayed fluorescence for amplified spontaneous emission. Cell Reports Physical Science, 2022, 3, 100686.	5.6	6
3	Molecular engineering of excited-state process for multicolor microcrystalline lasers. Journal of Materials Chemistry C, 2022, 10, 4166-4172.	5.5	1
4	Cocrystallization tailoring radiative decay pathways for thermally activated delayed fluorescence and room-temperature phosphorescence emission. Nanoscale, 2022, 14, 6305-6311.	5.6	7
5	A New PEDOT Derivative for Efficient Organic Solar Cell with a Fill Factor of 0.80. Advanced Energy Materials, 2022, 12, .	19.5	52
6	Selfâ€Erase Forceâ€Induced Turnâ€On Organic ASE Output Cryptographic Primitive for Advanced Multiple Information Encryption. Laser and Photonics Reviews, 2022, 16, .	8.7	4
7	Realization of Excitonâ€Mediated Optical Spinâ€Orbit Interaction in Organic Microcrystalline Resonators. Laser and Photonics Reviews, 2022, 16, .	8.7	10
8	Multicolor Biexciton Lasers Based on 2D Perovskite Single Crystalline Flakes. Advanced Optical Materials, 2022, 10, .	7.3	7
9	Excitation-Wavelength-Dependent Organic Long-Persistent Luminescence Originating from Excited-State Long-Range Proton Transfer. Journal of the American Chemical Society, 2022, 144, 12652-12660.	13.7	40
10	High-Performance Organic Laser Semiconductor Enabling Efficient Light-Emitting Transistors and Low-Threshold Microcavity Lasers. Nano Letters, 2022, 22, 5803-5809.	9.1	15
11	Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission. Angewandte Chemie, 2021, 133, 285-293.	2.0	7
12	Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission. Angewandte Chemie - International Edition, 2021, 60, 281-289.	13.8	33
13	Color―and Dimensionâ€Tunable Lightâ€Harvesting Organic Chargeâ€Transfer Alloys for Controllable Photonâ€Transport Photonics. Angewandte Chemie - International Edition, 2021, 60, 3037-3046.	13.8	30
14	Nontrivial band geometry in an optically active system. Nature Communications, 2021, 12, 689.	12.8	38
15	Quantum metric and wave packets at exceptional points in non-Hermitian systems. Physical Review B, 2021, 103, .	3.2	20
16	Tunable Triplet-Mediated Multicolor Lasing from Nondoped Organic TADF Microcrystals. Nano Letters, 2021, 21, 3287-3294.	9.1	28
17	High Optical Gain of Solutionâ€Processed Mixed ation CsPbBr ₃ Thin Films towards Enhanced Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2102210.	14.9	35
18	Organic Nanoparticles-Assisted Low-Power STED Nanoscopy. Nano Letters, 2021, 21, 3487-3494.	9.1	15

#	Article	IF	CITATIONS
19	Solutionâ€Processed Largeâ€Scale Concentricâ€Ring Laser on Twoâ€Dimensional Ruddlesden–Popper Perovskites Thin Films. Advanced Optical Materials, 2021, 9, 2100193.	7.3	8
20	Regulation of Thermally Activated Delayed Fluorescence to Roomâ€Temperature Phosphorescent Emission Channels by Controlling the Excitedâ€States Dynamics via J―and Hâ€Aggregation. Angewandte Chemie - International Edition, 2021, 60, 18059-18064.	13.8	109
21	Regulation of Thermally Activated Delayed Fluorescence to Roomâ€Temperature Phosphorescent Emission Channels by Controlling the Excitedâ€States Dynamics via J―and Hâ€Aggregation. Angewandte Chemie, 2021, 133, 18207-18212.	2.0	15
22	High Mobility Organic Lasing Semiconductor with Crystallizationâ€Enhanced Emission for Lightâ€Emitting Transistors. Angewandte Chemie - International Edition, 2021, 60, 20274-20279.	13.8	23
23	Experimental Measurement of the Divergent Quantum Metric of an Exceptional Point. Physical Review Letters, 2021, 127, 107402.	7.8	36
24	Highly emissive near-infrared solid organic fluorophores for visualization of latent fingerprints based on the powder dusting method. Journal of Materials Chemistry C, 2021, 9, 7345-7350.	5.5	25
25	Design of thermally activated delayed fluorescent emitters for organic solid-state microlasers. Journal of Materials Chemistry C, 2021, 9, 7400-7406.	5.5	18
26	Electrically Switchable Amplified Spontaneous Emission from Lead Halide Perovskite Film. ACS Omega, 2021, 6, 34021-34026.	3.5	4
27	Tailoring and Modifying an Organic Electron Acceptor toward the Cathode Interlayer for Highly Efficient Organic Solar Cells. Advanced Materials, 2020, 32, e1906557.	21.0	109
28	High performance single-crystalline organic field-effect transistors based on molecular-modified dibenzo[<i>a</i> , <i>e</i>]pentalenes derivatives. New Journal of Chemistry, 2020, 44, 17552-17557.	2.8	10
29	Inorganic Molecular Clusters with Facile Preparation and Neutral pH for Efficient Hole Extraction in Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 39462-39470.	8.0	14
30	Breaking Kasha's Rule as a Mechanism for Solution-Phase Room-Temperature Phosphorescence from High-Lying Triplet Excited State. Journal of Physical Chemistry Letters, 2020, 11, 8246-8251.	4.6	23
31	Remotely Photocontrolled Microrobots based on Photomechanical Molecular Crystals. ACS Applied Materials & Interfaces, 2020, 12, 27493-27498.	8.0	14
32	<i>tert</i> -Butyl-substituted bicarbazole as a bipolar host material for efficient green and yellow PhOLEDs. New Journal of Chemistry, 2020, 44, 10472-10478.	2.8	9
33	Organic Laser Molecule with High Mobility, High Photoluminescence Quantum Yield, and Deep-Blue Lasing Characteristics. Journal of the American Chemical Society, 2020, 142, 6332-6339.	13.7	90
34	Tuning the Hybridization of Local Exciton and Chargeâ€Transfer States in Highly Efficient Organic Photovoltaic Cells. Angewandte Chemie - International Edition, 2020, 59, 9004-9010.	13.8	144
35	Lasing from an Organic Microâ€Helix. Angewandte Chemie - International Edition, 2020, 59, 11080-11086.	13.8	19
36	Lasing from an Organic Microâ€Helix. Angewandte Chemie, 2020, 132, 11173-11179.	2.0	6

#	Article	IF	CITATIONS
37	Tuning the Hybridization of Local Exciton and Chargeâ€Transfer States in Highly Efficient Organic Photovoltaic Cells. Angewandte Chemie, 2020, 132, 9089-9095.	2.0	24
38	Highly Sensitive and Easily Recoverable Excitonic Piezochromic Fluorescent Materials for Haptic Sensors and Antiâ€Counterfeiting Applications. Advanced Functional Materials, 2020, 30, 2000105.	14.9	70
39	Fluorescent chemo-sensors based on "dually smart―optical micro/nano-waveguides lithographically fabricated with AIE composite resins. Materials Horizons, 2020, 7, 1782-1789.	12.2	19
40	Efficient Bosonic Condensation of Exciton Polaritons in an H-Aggregate Organic Single-Crystal Microcavity. Nano Letters, 2020, 20, 7550-7557.	9.1	23
41	Control of molecular packing toward a lateral microresonator for microlaser array. Journal of Materials Chemistry C, 2020, 8, 8531-8537.	5.5	9
42	Ecoâ€Compatible Solventâ€Processed Organic Photovoltaic Cells with Over 16% Efficiency. Advanced Materials, 2019, 31, e1903441.	21.0	445
43	Excitedâ€State Modulation for Controlling Fluorescence and Phosphorescence Pathways toward Whiteâ€Light Emission. Advanced Optical Materials, 2019, 7, 1900767.	7.3	34
44	Wavelength-Turnable Organic Microring Laser Arrays from Thermally Activated Delayed Fluorescent Emitters. ACS Photonics, 2019, 6, 3208-3214.	6.6	42
45	Organic nanoparticles with ultrahigh stimulated emission depletion efficiency for low-power STED nanoscopy. Nanoscale, 2019, 11, 12990-12996.	5.6	16
46	Modulation of Amplified Spontaneous Emissions between Singlet Fluorescence and Triplet Phosphorescence Channels in Organic Dye Lasers. Laser and Photonics Reviews, 2019, 13, 1900036.	8.7	14
47	p-Doped Conducting Polyelectrolyte as an Anode Interlayer Enables High Efficiency for 1 cm ² Printed Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 20205-20213.	8.0	28
48	Tunable Halide Perovskites for Miniaturized Solid‣tate Laser Applications. Advanced Optical Materials, 2019, 7, 1900099.	7.3	47
49	Oriented Growth of Ultrathin Single Crystals of 2D Ruddlesden–Popper Hybrid Lead Iodide Perovskites for High-Performance Photodetectors. ACS Applied Materials & Interfaces, 2019, 11, 15905-15912.	8.0	43
50	Significant Effect of Fluorination on Simultaneously Improving Work Function and Transparency of Anode Interlayer for Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1803826.	19.5	21
51	Amplified Spontaneous Emission Based on 2D Ruddlesden–Popper Perovskites. Advanced Functional Materials, 2018, 28, 1707006.	14.9	129
52	2D Ruddlesden–Popper Perovskites Microring Laser Array. Advanced Materials, 2018, 30, e1706186.	21.0	190
53	A Twoâ€Dimensional Ruddlesden–Popper Perovskite Nanowire Laser Array based on Ultrafast Lightâ€Harvesting Quantum Wells. Angewandte Chemie - International Edition, 2018, 57, 7748-7752.	13.8	72
54	A Twoâ€Dimensional Ruddlesden–Popper Perovskite Nanowire Laser Array based on Ultrafast Lightâ€Harvesting Quantum Wells. Angewandte Chemie, 2018, 130, 7874-7878.	2.0	24

QING LIAO

#	Article	IF	CITATIONS
55	Cluster-Mediated Nucleation and Growth of J- and H-Type Polymorphs of Difluoroboron Avobenzone for Organic Microribbon Lasers. ACS Nano, 2018, 12, 5359-5367.	14.6	45
56	Organic field-effect optical waveguides. Nature Communications, 2018, 9, 4790.	12.8	85
57	Compositionâ€Graded Cesium Lead Halide Perovskite Nanowires with Tunable Dualâ€Color Lasing Performance. Advanced Materials, 2018, 30, e1800596.	21.0	99
58	Soft Lithography to Fabricate 3D Patterning Organic Microrings towards Highâ€Performance Nearâ€Infrared Laser Arrays. Advanced Optical Materials, 2018, 6, 1800219.	7.3	14
59	Intracellular near-Infrared Microlaser Probes Based on Organic Microsphere–SiO ₂ Core–Shell Structures for Cell Tagging and Tracking. ACS Applied Materials & Interfaces, 2018, 10, 32981-32987.	8.0	24
60	The effect of 1D- and 2D-polymorphs on organic single-crystal optoelectronic devices: lasers and field effect transistors. Journal of Materials Chemistry C, 2018, 6, 7994-8002.	5.5	24
61	Patterning Multicolored Microdisk Laser Arrays of Cesium Lead Halide Perovskite. Advanced Materials, 2017, 29, 1604510.	21.0	182
62	Embedding Perovskite Nanocrystals into a Polymer Matrix for Tunable Luminescence Probes in Cell Imaging. Advanced Functional Materials, 2017, 27, 1604382.	14.9	328
63	Latticeâ€Matched Epitaxial Growth of Organic Heterostructures for Integrated Optoelectronic Application. Angewandte Chemie - International Edition, 2017, 56, 3616-3620.	13.8	68
64	Latticeâ€Matched Epitaxial Growth of Organic Heterostructures for Integrated Optoelectronic Application. Angewandte Chemie, 2017, 129, 3670-3674.	2.0	23
65	Organic Phosphorescence Nanowire Lasers. Journal of the American Chemical Society, 2017, 139, 6376-6381.	13.7	166
66	Organic–Inorganic Hybrid Perovskite Nanowire Laser Arrays. ACS Nano, 2017, 11, 5766-5773.	14.6	244
67	Luminescence emission-modulated based on specific two-photon compound of triazole-conjugated pyrene derivative. RSC Advances, 2017, 7, 19002-19006.	3.6	7
68	Benzoindolic squaraine dyes with a large two-photon absorption cross-section. Journal of Materials Chemistry C, 2017, 5, 1224-1230.	5.5	30
69	Polymorphâ€Dependent Green, Yellow, and Red Emissions of Organic Crystals for Laser Applications. Chemistry - an Asian Journal, 2017, 12, 2985-2990.	3.3	16
70	Tuning the organic microcrystal laser wavelength of ESIPT-active compounds <i>via</i> controlling the excited enol* and keto* emissions. Journal of Materials Chemistry C, 2017, 5, 12235-12240.	5.5	38
71	Controlled Substitution of Chlorine for Iodine in Single-Crystal Nanofibers of Mixed Perovskite MAPbl ₃₋ <i>_x</i> Cl <i>_x</i> . Small, 2016, 12, 3780-3787.	10.0	20
72	Colorimetric detection of lysozyme based on its effect on the growth of gold nanoparticles induced by the reaction of chloroauric acid and hydroxylamine. Mikrochimica Acta, 2016, 183, 3135-3141.	5.0	10

#	Article	IF	CITATIONS
73	Photodetectors: Controlled Substitution of Chlorine for Iodine in Single-Crystal Nanofibers of Mixed Perovskite MAPbI ₃₋ <i>_x</i> Cl <i>_x</i> (i>(Small 28/2016). Small, 2016, 12, 3880-3880.	10.0	0
74	An Organic Microlaser Array Based on a Lateral Microcavity of a Single Jâ€aggregation Microbelt. Angewandte Chemie, 2015, 127, 7143-7147.	2.0	2
75	Perovskite Microdisk Microlasers Selfâ€Assembled from Solution. Advanced Materials, 2015, 27, 3405-3410.	21.0	352
76	Self-Assembled Microdisk Lasers of Perylenediimides. Journal of the American Chemical Society, 2015, 137, 15105-15111.	13.7	88
77	Near-Infrared Lasing from Small-Molecule Organic Hemispheres. Journal of the American Chemical Society, 2015, 137, 9289-9295.	13.7	133
78	An Organic Microlaser Array Based on a Lateral Microcavity of a Single Jâ€aggregation Microbelt. Angewandte Chemie - International Edition, 2015, 54, 7037-7041.	13.8	34
79	Colorimetric Signal Amplification Assay for Mercury Ions Based on the Catalysis of Gold Amalgam. Analytical Chemistry, 2015, 87, 10963-10968.	6.5	57
80	Rational design of small indolic squaraine dyes with large two-photon absorption cross section. Chemical Science, 2015, 6, 761-769.	7.4	69
81	Perylene crystals: tuning optoelectronic properties by dimensional-controlled synthesis. Journal of Materials Chemistry C, 2014, 2, 9695-9700.	5.5	27
82	Whisperingâ€Galleryâ€Mode Microlaser Based on Selfâ€Assembled Organic Singleâ€Crystalline Hexagonal Microdisks. Angewandte Chemie - International Edition, 2014, 53, 5863-5867.	13.8	126
83	Exciton-Polaritons with Size-Tunable Coupling Strengths in Self-Assembled Organic Microresonators. ACS Photonics, 2014, 1, 413-420.	6.6	43
84	An organic nanowire waveguide exciton–polariton sub-microlaser and its photonic application. Journal of Materials Chemistry C, 2014, 2, 2773-2778.	5.5	38
85	Whispering Gallery Mode Laser Based on a Selfâ€Assembled Organic Octahedron Microcrystal Microresonator. Advanced Optical Materials, 2014, 2, 1160-1166.	7.3	15
86	Highly stable Ag–Au nanoplates and nanoframes for two-photon luminescence. RSC Advances, 2014, 4, 35263.	3.6	14
87	Shape-Engineering of Self-Assembled Organic Single Microcrystal as Optical Microresonator for laser Applications. Scientific Reports, 2014, 4, 7011.	3.3	81
88	Full-color tunable organic nanoparticles with FRET-assisted enhanced two-photon excited fluorescence for bio-imaging. Journal of Materials Chemistry B, 2013, 1, 6035.	5.8	20
89	Low threshold photonic crystal lasing from a dye with high emission quantum yield and weak self-quenching. Journal of Materials Chemistry C, 2013, 1, 6157.	5.5	7
90	Lowâ€Threshold Nanolasers Based on Slabâ€Nanocrystals of Hâ€Aggregated Organic Semiconductors. Advanced Materials, 2012, 24, OP216-20.	21.0	106

#	Article	IF	CITATIONS
91	Self-assembly of twisted tetrachloroperylenediimide chromophores into two dimensional brick-stone aggregates: exciton dynamics and photoconductivity. Chemical Communications, 2012, 48, 6402.	4.1	27
92	Water-miscible organic J-aggregate nanoparticles as efficient two-photon fluorescent nano-probes for bio-imaging. Journal of Materials Chemistry, 2012, 22, 17737.	6.7	53
93	Modification of the Green Fluorescent Protein Chromophore with Large Aromatic Moieties: Photophysical Study and Solid‣tate Emission. Asian Journal of Organic Chemistry, 2012, 1, 352-358.	2.7	22
94	Polymorphismâ€Dependent Emission for Di(pâ€methoxylphenyl)dibenzofulvene and Analogues: Optical Waveguide/Amplified Spontaneous Emission Behaviors. Advanced Functional Materials, 2012, 22, 4862-4872.	14.9	220
95	Tunable two-photon pumped lasing from alloyed semiconductor nanoribbons. Journal of Materials Chemistry, 2011, 21, 4837.	6.7	8
96	Innentitelbild: Cooperative Assembly of Binary Molecular Components into Tubular Structures for Multiple Photonic Applications (Angew. Chem. 21/2011). Angewandte Chemie, 2011, 123, 4812-4812.	2.0	0
97	Cooperative Assembly of Binary Molecular Components into Tubular Structures for Multiple Photonic Applications. Angewandte Chemie - International Edition, 2011, 50, 4942-4946.	13.8	48
98	Inside Cover: Cooperative Assembly of Binary Molecular Components into Tubular Structures for Multiple Photonic Applications (Angew. Chem. Int. Ed. 21/2011). Angewandte Chemie - International Edition, 2011, 50, 4716-4716.	13.8	1
99	lr(ppy) ₃ phosphorescent microrods and nanowires: promising micro-phosphors. Journal of Materials Chemistry, 2009, 19, 89-96.	6.7	61
100	Phase- and Shape-Controlled Synthesis of Single Crystalline Perylene Nanosheets and Its Optical Properties. Journal of Physical Chemistry C, 2009, 113, 10038-10043.	3.1	107
101	Surface-enhanced Raman scattering and DFT computational studies of a benzotriazole derivative. Journal of Molecular Structure, 2008, 888, 2-6.	3.6	5
102	Excitedâ€Stateâ€Modulated Dualâ€Wavelength Singleâ€Mode Lasing from a Singleâ€Component Organic Microbelt. Advanced Optical Materials, 0, , 2200270.	7.3	2