
Geraldine Delbes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6783163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A cross-species comparative approach to assessing multi- and transgenerational effects of endocrine disrupting chemicals. Environmental Research, 2022, 204, 112063.	7.5	27
2	Effects of endocrine disrupting chemicals on gonad development: Mechanistic insights from fish and mammals. Environmental Research, 2022, 204, 112040.	7.5	60
3	Impacts of endocrine disrupting chemicals on reproduction in wildlife and humans. Environmental Research, 2022, 208, 112584.	7.5	84
4	Impact of in Utero Rat Exposure to 17Alpha-Ethinylestradiol or Genistein on Testicular Development and Germ Cell Gene Expression. Frontiers in Toxicology, 2022, 4, .	3.1	2
5	Dynamics in the expression of epigenetic modifiers and histone modifications in perinatal rat germ cells during de novo DNA methylationâ€. Biology of Reproduction, 2021, 104, 361-373.	2.7	5
6	Sperm DNA Damage in Cancer Patients. Advances in Experimental Medicine and Biology, 2019, 1166, 189-203.	1.6	12
7	Sperm DNA integrity in adult survivors of paediatric leukemia and lymphoma: A pilot study on the impact of age and type of treatment. PLoS ONE, 2019, 14, e0226262.	2.5	5
8	In vitro study of doxorubicin-induced oxidative stress in spermatogonia and immature Sertoli cells. Toxicology and Applied Pharmacology, 2018, 348, 32-42.	2.8	21
9	Effects of different cryopreservation methods on DNA integrity and sperm chromatin quality in men. Andrology, 2018, 6, 829-835.	3.5	42
10	Doxorubicin and vincristine affect undifferentiated rat spermatogonia. Reproduction, 2017, 153, 725-735.	2.6	22
11	Fetal testis organ culture reproduces the dynamics of epigenetic reprogramming in rat gonocytes. Epigenetics and Chromatin, 2017, 10, 19.	3.9	12
12	Protective role of zinc against the toxicity induced by exposure to cadmium during gestation and lactation on testis development. Reproductive Toxicology, 2016, 63, 151-160.	2.9	40
13	Ozone treatment prevents the toxicity of an environmental mixture of estrogens on rat fetal testicular development. Reproductive Toxicology, 2015, 58, 85-92.	2.9	11
14	Concerns about the widespread use of rodent models for human risk assessments of endocrine disruptors. Reproduction, 2014, 147, R119-R129.	2.6	72
15	The use of complimentary assays to evaluate the enrichment of human sperm quality in asthenoteratozoospermic and teratozoospermic samples processed with Annexin-V magnetic activated cell sorting. Andrology, 2013, 1, 698-706.	3.5	33
16	Case report: the use of annexin V coupled with magnetic activated cell sorting in cryopreserved spermatozoa from a male cancer survivor: healthy twin newborns after two previous ICSI failures. Journal of Assisted Reproduction and Genetics, 2013, 30, 1415-1419.	2.5	27
17	Selective induction of glutathione S-transferases in round spermatids from the Brown-Norway rat by the chemotherapeutic regimen for testicular cancer. Reproductive Toxicology, 2013, 36, 24-32.	2.9	2
18	Epigenetic Alterations in Sperm DNA Associated with Testicular Cancer Treatment. Toxicological Sciences, 2012, 125, 532-543.	3.1	45

GERALDINE DELBES

#	Article	IF	CITATIONS
19	PABP Interacting Protein 2A (PAIP2A) Regulates Specific Key Proteins During Spermiogenesis in the Mouse1. Biology of Reproduction, 2012, 86, 95.	2.7	13
20	Degradation of 17α-ethinylestradiol by ozonation — Identification of the by-products and assessment of their estrogenicity and toxicity. Environment International, 2012, 39, 66-72.	10.0	56
21	Toxicants and human sperm chromatin integrity. Molecular Human Reproduction, 2010, 16, 14-22.	2.8	100
22	Reversibility of the effects of the chemotherapeutic regimen for non-Hodgkin lymphoma, cyclophosphamide, doxorubicin, vincristine, and prednisone, on the male rat reproductive system and progeny outcome. Reproductive Toxicology, 2010, 29, 332-338.	2.9	19
23	The poly(A)-binding protein partner Paip2a controls translation during late spermiogenesis in mice. Journal of Clinical Investigation, 2010, 120, 3389-3400.	8.2	60
24	PABP Interacting Protein 2 (Paip2) Regulates the Translation of Key Proteins Involved inSpermiogenesis Biology of Reproduction, 2010, 83, 137-137.	2.7	0
25	Impact of the Chemotherapy Cocktail Used to Treat Testicular Cancer on the Gene Expression Profile of Germ Cells from Male Brown-Norway Rats1. Biology of Reproduction, 2009, 80, 320-327.	2.7	31
26	PABP Interacting Protein 2 (Paip2) Is a Major Translational Regulator Involved in the Maturation of Male Germ Cells and Male Fertility Biology of Reproduction, 2009, 81, 167-167.	2.7	2
27	Selective Induction of Glutathione S-transferases in Round Spematids by the Chemotherapeutic Regimen for Testicular Cancer in the Brown-Norway Rat Biology of Reproduction, 2008, 78, 228-228.	2.7	Ο
28	Identification of Brown Norway Rat Genomic Loci Altered in Germ Cell Methylation Patterns Due to Combination Chemotherapy for Testicular Cancer Biology of Reproduction, 2008, 78, 193-193.	2.7	0
29	Developmental Changes in Testicular Sensitivity to Estrogens throughout Fetal and Neonatal Life. Toxicological Sciences, 2007, 99, 234-243.	3.1	40
30	Effects of the Chemotherapeutic Agents for Non-Hodgkin Lymphoma, Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone (CHOP), on the Male Rat Reproductive System and Progeny Outcome. Journal of Andrology, 2007, 28, 578-587.	2.0	42
31	Effects of the Chemotherapy Cocktail Used to Treat Testicular Cancer on Sperm Chromatin Integrity. Journal of Andrology, 2006, 28, 241-249.	2.0	78
32	Organotypic culture, a powerful model for studying rat and mouse fetal testis development. Cell and Tissue Research, 2006, 324, 507-521.	2.9	90
33	Estrogen effects on fetal and neonatal testicular development. Reproduction, 2006, 132, 527-538.	2.6	147
34	Endogenous Estrogens Inhibit Mouse Fetal Leydig Cell Development via Estrogen Receptor α. Endocrinology, 2005, 146, 2454-2461.	2.8	114
35	Estrogen Receptor β-Mediated Inhibition of Male Germ Cell Line Development in Mice by Endogenous Estrogens during Perinatal Life. Endocrinology, 2004, 145, 3395-3403.	2.8	100
36	Development of the foetal and neonatal testis. Andrologia, 2003, 35, 79-83.	2.1	21