Yuebing Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6783094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visibly Transparent Polymer Solar Cells Produced by Solution Processing. ACS Nano, 2012, 6, 7185-7190.	14.6	492
2	Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chemical Society Reviews, 2012, 41, 97-114.	38.1	487
3	Viologen-Mediated Assembly of and Sensing with Carboxylatopillar[5]arene-Modified Gold Nanoparticles. Journal of the American Chemical Society, 2013, 135, 1570-1576.	13.7	432
4	Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors. ACS Nano, 2011, 5, 9877-9882.	14.6	348
5	Biologically inspired flexible photonic films for efficient passive radiative cooling. Proceedings of the United States of America, 2020, 117, 14657-14666.	7.1	260
6	Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics, 2019, 8, 339-366.	6.0	226
7	Opto-thermoelectric nanotweezers. Nature Photonics, 2018, 12, 195-201.	31.4	216
8	Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches. Nano Letters, 2009, 9, 819-825.	9.1	213
9	Large-Area Au-Nanoparticle-Functionalized Si Nanorod Arrays for Spatially Uniform Surface-Enhanced Raman Spectroscopy. ACS Nano, 2017, 11, 1478-1487.	14.6	199
10	Bubble-Pen Lithography. Nano Letters, 2016, 16, 701-708.	9.1	170
11	Highly Efficient Photoelectrochemical Water Splitting from Hierarchical WO ₃ /BiVO ₄ Nanoporous Sphere Arrays. Nano Letters, 2017, 17, 8012-8017.	9.1	164
12	Lightâ€Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals. Advanced Materials, 2008, 20, 3528-3532.	21.0	150
13	Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis. ACS Nano, 2016, 10, 9659-9668.	14.6	138
14	Molecular Switches and Motors on Surfaces. Annual Review of Physical Chemistry, 2013, 64, 605-630.	10.8	119
15	Opto-thermophoretic assembly of colloidal matter. Science Advances, 2017, 3, e1700458.	10.3	115
16	Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells. ACS Nano, 2017, 11, 3147-3154.	14.6	114
17	Optothermal Manipulations of Colloidal Particles and Living Cells. Accounts of Chemical Research, 2018, 51, 1465-1474.	15.6	108
18	Incident-Angle-Modulated Molecular Plasmonic Switches: A Case of Weak Exciton–Plasmon Coupling. Nano Letters, 2011, 11, 2061-2065.	9.1	107

#	Article	IF	CITATIONS
19	Surface-Enhanced Raman Spectroscopy to Probe Reversibly Photoswitchable Azobenzene in Controlled Nanoscale Environments. Nano Letters, 2011, 11, 3447-3452.	9.1	100
20	Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings: fabrication and application in biosensing. Journal of Materials Chemistry, 2007, 17, 4896.	6.7	95
21	Moiré Nanosphere Lithography. ACS Nano, 2015, 9, 6031-6040.	14.6	91
22	Moiré Chiral Metamaterials. Advanced Optical Materials, 2017, 5, 1700034.	7.3	91
23	High-Performance Ultrathin Active Chiral Metamaterials. ACS Nano, 2018, 12, 5030-5041.	14.6	89
24	Tunable Fano Resonance and Plasmon–Exciton Coupling in Single Au Nanotriangles on Monolayer WS ₂ at Room Temperature. Advanced Materials, 2018, 30, e1705779.	21.0	88
25	Optimizing plasmonic nanoantennas via coordinated multiple coupling. Scientific Reports, 2015, 5, 14788.	3.3	84
26	Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets. Nano Letters, 2015, 15, 7519-7525.	9.1	82
27	Tunable Resonance Coupling in Single Si Nanoparticle–Monolayer WS ₂ Structures. ACS Applied Materials & Interfaces, 2018, 10, 16690-16697.	8.0	82
28	Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals. Optics Letters, 2009, 34, 2351.	3.3	80
29	Dynamic Tuning of Plasmon–Exciton Coupling in Arrays of Nanodisk–Jâ€aggregate Complexes. Advanced Materials, 2010, 22, 3603-3607.	21.0	80
30	Effects of Geometry and Composition on Charge-Induced Plasmonic Shifts in Gold Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 7309-7317.	3.1	79
31	A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection. Lab on A Chip, 2011, 11, 1795.	6.0	74
32	Thermodynamic synthesis of solution processable ladder polymers. Chemical Science, 2016, 7, 881-889.	7.4	70
33	Optical Nanoprinting of Colloidal Particles and Functional Structures. ACS Nano, 2019, 13, 3783-3795.	14.6	64
34	Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays. Journal of Physical Chemistry C, 2009, 113, 7019-7024.	3.1	63
35	Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale. Small, 2015, 11, 4423-4444.	10.0	61
36	Interfacial-entropy-driven thermophoretic tweezers. Lab on A Chip, 2017, 17, 3061-3070.	6.0	61

#	Article	IF	CITATIONS
37	Heat-Mediated Optical Manipulation. Chemical Reviews, 2022, 122, 3122-3179.	47.7	61
38	Deep Convolutional Mixture Density Network for Inverse Design of Layered Photonic Structures. ACS Photonics, 2020, 7, 2703-2712.	6.6	60
39	High-Resolution Bubble Printing of Quantum Dots. ACS Applied Materials & Interfaces, 2017, 9, 16725-16733.	8.0	59
40	Organic-Inorganic Hybrid Pillarene-Based Nanomaterial for Label-Free Sensing and Catalysis. Matter, 2019, 1, 848-861.	10.0	59
41	Moiré Metamaterials and Metasurfaces. Advanced Optical Materials, 2018, 6, 1701057.	7.3	58
42	Photoresponsive Molecules in Wellâ€Defined Nanoscale Environments. Advanced Materials, 2013, 25, 302-312.	21.0	57
43	Design and applications of lattice plasmon resonances. Nano Research, 2018, 11, 4423-4440.	10.4	56
44	Thermal behavior of localized surface plasmon resonance of Auâ^•TiO2 core/shell nanoparticle arrays. Applied Physics Letters, 2007, 90, 183117.	3.3	52
45	All-Optical Modulation of Localized Surface Plasmon Coupling in a Hybrid System Composed of Photoswitchable Gratings and Au Nanodisk Arrays. Journal of Physical Chemistry C, 2011, 115, 7717-7722.	3.1	52
46	Photoswitchable Rabi Splitting in Hybrid Plasmon–Waveguide Modes. Nano Letters, 2016, 16, 7655-7663.	9.1	52
47	All-optical reconfigurable chiral meta-molecules. Materials Today, 2019, 25, 10-20.	14.2	52
48	Coupling between Molecular and Plasmonic Resonances: Effect of Molecular Absorbance. Journal of Physical Chemistry C, 2009, 113, 18499-18503.	3.1	51
49	Efficient Photoelectrochemical Water Oxidation over Hydrogenâ€Reduced Nanoporous BiVO ₄ with Ni–B _i Electrocatalyst. ChemElectroChem, 2015, 2, 1385-1395.	3.4	50
50	Combinational template-assisted fabrication of hierarchically ordered nanowire arrays on substrates for device applications. Applied Physics Letters, 2006, 89, 233104.	3.3	49
51	Overcoming Diffusion-Limited Trapping in Nanoaperture Tweezers Using Opto-Thermal-Induced Flow. Nano Letters, 2020, 20, 768-779.	9.1	48
52	Opto-thermoelectric microswimmers. Light: Science and Applications, 2020, 9, 141.	16.6	47
53	Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold. Journal of Physical Chemistry C, 2010, 114, 18059-18066.	3.1	46
54	Roomâ€Temperature Active Modulation of Valley Dynamics in a Monolayer Semiconductor through Chiral Purcell Effects. Advanced Materials, 2019, 31, e1904132.	21.0	46

#	Article	IF	CITATIONS
55	Opto-Thermophoretic Attraction, Trapping, and Dynamic Manipulation of Lipid Vesicles. Langmuir, 2018, 34, 13252-13262.	3.5	43
56	Near-Ultraviolet Dielectric Metasurfaces: from Surface-Enhanced Circular Dichroism Spectroscopy to Polarization-Preserving Mirrors. Journal of Physical Chemistry C, 2019, 123, 11814-11822.	3.1	42
57	Tunable Chiral Optics in All-Solid-Phase Reconfigurable Dielectric Nanostructures. Nano Letters, 2021, 21, 973-979.	9.1	42
58	Nanoradiator-Mediated Deterministic Opto-Thermoelectric Manipulation. ACS Nano, 2018, 12, 10383-10392.	14.6	41
59	Towards nanoporous polymer thin film-based drug delivery systems. Thin Solid Films, 2009, 517, 1794-1798.	1.8	40
60	Surface-Enhanced Raman Spectroscopy To Probe Photoreaction Pathways and Kinetics of Isolated Reactants on Surfaces: Flat versus Curved Substrates. Nano Letters, 2012, 12, 5362-5368.	9.1	40
61	Reconfigurable opto-thermoelectric printing of colloidal particles. Chemical Communications, 2017, 53, 7357-7360.	4.1	39
62	Optically active plasmonic resonance in self-assembled nanostructures. Materials Chemistry Frontiers, 2018, 2, 662-678.	5.9	39
63	Chiral metamaterials <i>via</i> Moiré stacking. Nanoscale, 2018, 10, 18096-18112.	5.6	39
64	Optical nanomanipulation on solid substrates via optothermally-gated photon nudging. Nature Communications, 2019, 10, 5672.	12.8	39
65	Molecular-Fluorescence Enhancement via Blue-Shifted Plasmon-Induced Resonance Energy Transfer. Journal of Physical Chemistry C, 2016, 120, 14820-14827.	3.1	38
66	Plasmon–trion and plasmon–exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2. Nanoscale, 2017, 9, 13947-13955.	5.6	35
67	Optothermoplasmonic Nanolithography for Onâ€Đemand Patterning of 2D Materials. Advanced Functional Materials, 2018, 28, 1803990.	14.9	35
68	Label-Free Ultrasensitive Detection of Abnormal Chiral Metabolites in Diabetes. ACS Nano, 2021, 15, 6448-6456.	14.6	35
69	Electronic properties of tin dichalcogenide monolayers and effects of hydrogenation and tension. Journal of Materials Chemistry C, 2015, 3, 3714-3721.	5.5	34
70	Opto-Thermophoretic Manipulation and Construction of Colloidal Superstructures in Photocurable Hydrogels. ACS Applied Nano Materials, 2018, 1, 3998-4004.	5.0	33
71	Opto-thermoelectric pulling of light-absorbing particles. Light: Science and Applications, 2020, 9, 34.	16.6	33
72	Dual-band moiré metasurface patches for multifunctional biomedical applications. Nanoscale, 2016, 8, 18461-18468.	5.6	32

#	Article	IF	CITATIONS
73	Digital manufacturing of advanced materials: Challenges and perspective. Materials Today, 2019, 28, 49-62.	14.2	32
74	Opto-refrigerative tweezers. Science Advances, 2021, 7, .	10.3	32
75	Opto-thermophoretic fiber tweezers. Nanophotonics, 2019, 8, 475-485.	6.0	31
76	Patterning and fluorescence tuning of quantum dots with haptic-interfaced bubble printing. Journal of Materials Chemistry C, 2017, 5, 5693-5699.	5.5	30
77	Enhancing Surface Capture and Sensing of Proteins with Low-Power Optothermal Bubbles in a Biphasic Liquid. Nano Letters, 2020, 20, 7020-7027.	9.1	30
78	Optical Patterning of Two-Dimensional Materials. Research, 2020, 2020, 6581250.	5.7	30
79	Engineering of parallel plasmonic–photonic interactions for on-chip refractive index sensors. Nanoscale, 2015, 7, 12205-12214.	5.6	29
80	Tunable multiband metasurfaces by moir $ ilde{A}$ © nanosphere lithography. Nanoscale, 2015, 7, 20391-20396.	5.6	29
81	Accumulation-Driven Unified Spatiotemporal Synthesis and Structuring of Immiscible Metallic Nanoalloys. Matter, 2019, 1, 1606-1617.	10.0	29
82	Suppressing material loss in the visible and near-infrared range for functional nanophotonics using bandgap engineering. Nature Communications, 2020, 11, 5055.	12.8	29
83	Fabrication of large area ordered metal nanoring arrays for nanoscale optical sensors. Journal of Non-Crystalline Solids, 2006, 352, 2532-2535.	3.1	27
84	Thermal behaviour of ultra-thin Co overlayers on rutile TiO2(100) surface. Surface Science, 2005, 589, 32-41.	1.9	26
85	Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions. Nanophotonics, 2015, 4, 186-197.	6.0	26
86	Hydrogen-reduced bismuth oxyiodide nanoflake arrays with plasmonic enhancements for efficient photoelectrochemical water reduction. Electrochimica Acta, 2016, 219, 20-27.	5.2	26
87	Optothermophoretic Manipulation of Colloidal Particles in Nonionic Liquids. Journal of Physical Chemistry C, 2018, 122, 24226-24234.	3.1	26
88	Darkâ€Excitonâ€Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer WS ₂ at Room Temperature. Small, 2019, 15, e1900982.	10.0	25
89	Opto-Thermophoretic Tweezers and Assembly. Journal of Micro and Nano-Manufacturing, 2018, 6, .	0.7	24
90	Al2O3-incorporation effect on the band structure of Ba0.5Sr0.5TiO3 thin films. Applied Physics Letters, 2005, 86, 112910.	3.3	23

#	Article	IF	CITATIONS
91	Effect of Tether Conductivity on the Efficiency of Photoisomerization of Azobenzene-Functionalized Molecules on Au{111}. Journal of Physical Chemistry Letters, 2012, 3, 2388-2394.	4.6	23
92	"Pointâ€andâ€5hoot―Synthesis of Metallic Ring Arrays and Surfaceâ€Enhanced Optical Spectroscopy. Advanced Optical Materials, 2018, 6, 1701213.	7.3	23
93	Atomistic modeling and rational design of optothermal tweezers for targeted applications. Nano Research, 2021, 14, 295-303.	10.4	23
94	Universal optothermal micro/nanoscale rotors. Science Advances, 2022, 8, .	10.3	23
95	Photoreaction of Matrix-Isolated Dihydroazulene-Functionalized Molecules on Au{111}. Nano Letters, 2013, 13, 337-343.	9.1	21
96	Tunable Graphene Metasurfaces with Gradient Features by Selfâ€Assemblyâ€Based Moiré Nanosphere Lithography. Advanced Optical Materials, 2016, 4, 2035-2043.	7.3	21
97	Optothermally Assembled Nanostructures. Accounts of Materials Research, 2021, 2, 352-363.	11.7	21
98	Microstructure-dependent band structure of HfO2 thin films. Thin Solid Films, 2006, 504, 197-200.	1.8	20
99	Plasmon-enhanced nanoporous BiVO4photoanodes for efficient photoelectrochemical water oxidation. Nanotechnology, 2016, 27, 235401.	2.6	19
100	Opto-Thermocapillary Nanomotors on Solid Substrates. ACS Nano, 2022, 16, 8820-8826.	14.6	19
101	Thermo-Electro-Mechanics at Individual Particles in Complex Colloidal Systems. Journal of Physical Chemistry C, 2019, 123, 21639-21644.	3.1	18
102	Decoding Optical Data with Machine Learning. Laser and Photonics Reviews, 2021, 15, 2000422.	8.7	18
103	Opto-thermoelectric speckle tweezers. Nanophotonics, 2020, 9, 927-933.	6.0	18
104	A mixture-density-based tandem optimization network for on-demand inverse design of thin-film high reflectors. Nanophotonics, 2021, 10, 4057-4065.	6.0	18
105	Regioselective Localization and Tracking of Biomolecules on Single Gold Nanoparticles. Advanced Science, 2015, 2, 1500232.	11.2	17
106	Light-Driven Magnetic Encoding for Hybrid Magnetic Micromachines. Nano Letters, 2021, 21, 1628-1635.	9.1	17
107	Plasmonic Nanotweezers and Nanosensors for Pointâ€of are Applications. Advanced Optical Materials, 2021, 9, 2100050.	7.3	16
108	Sensitivityâ€Enhancing Strategies in Optical Biosensing. Small, 2021, 17, e2004988.	10.0	16

#	Article	IF	CITATIONS
109	Controlling Plasmonâ€Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules. Small, 2017, 13, 1701763.	10.0	15
110	Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres. Advanced Materials, 2021, 33, e2007236.	21.0	15
111	Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE. Journal of Crystal Growth, 2004, 268, 369-374.	1.5	14
112	Liquid Optothermoelectrics: Fundamentals and Applications. Langmuir, 2021, 37, 1315-1336.	3.5	14
113	Programmable Multimodal Optothermal Manipulation of Synthetic Particles and Biological Cells. ACS Nano, 2022, 16, 10878-10889.	14.6	14
114	Radiative Enhancement of Plasmonic Nanopatch Antennas. Plasmonics, 2016, 11, 213-222.	3.4	13
115	Optical manipulation and assembly of micro/nanoscale objects on solid substrates. IScience, 2022, 25, 104035.	4.1	13
116	Towards rational design of multifunctional theranostic nanoparticles: what barriers do we need to overcome?. Nanomedicine, 2014, 9, 1767-1770.	3.3	11
117	Opto-Thermoelectric Tweezers: Principles and Applications. Frontiers in Physics, 2020, 8, .	2.1	11
118	Broadband Forward Light Scattering by Architectural Design of Core–Shell Silicon Particles. Advanced Functional Materials, 2021, 31, 2100915.	14.9	11
119	Roomâ€Temperature Observation of Nearâ€Intrinsic Exciton Linewidth in Monolayer WS ₂ . Advanced Materials, 2022, 34, e2108721.	21.0	11
120	Multiple plasmonic-photonic couplings in the Au nanobeaker arrays: enhanced robustness and wavelength tunability. Optics Letters, 2015, 40, 2060.	3.3	10
121	Digital Assembly of Colloidal Particles for Nanoscale Manufacturing. Particle and Particle Systems Characterization, 2019, 36, 1900152.	2.3	10
122	Acousto-plasmofluidics: Acoustic modulation of surface plasmon resonance in microfluidic systems. AIP Advances, 2015, 5, 097161.	1.3	9
123	Enhancing Single-Molecule Fluorescence Spectroscopy with Simple and Robust Hybrid Nanoapertures. ACS Photonics, 2021, 8, 1673-1682.	6.6	9
124	Directional light emission by electric and magnetic dipoles near a nanosphere: an analytical approach based on the generalized Mie theory. Optics Letters, 2021, 46, 302.	3.3	8
125	Bubbleâ€pen lithography: Fundamentals and applications. Aggregate, 2022, 3, .	9.9	8
126	Investigating water/oil interfaces with opto-thermophoresis. Nature Communications, 2022, 13, .	12.8	8

#	Article	IF	CITATIONS
127	Grand Challenges in Nanofabrication: There Remains Plenty of Room at the Bottom. Frontiers in Nanotechnology, 2021, 3, .	4.8	6
128	Substrate-Independent Lattice Plasmon Modes for High-Performance On-Chip Plasmonic Sensors. Plasmonics, 2016, 11, 1427-1435.	3.4	5
129	Plasmon-enhanced hierarchical photoelectrodes with mechanical flexibility for hydrogen generation from urea solution and human urine. Journal of Applied Electrochemistry, 2020, 50, 63-69.	2.9	5
130	Self-Limiting Opto-Electrochemical Thinning of Transition-Metal Dichalcogenides. ACS Applied Materials & amp; Interfaces, 2021, 13, 58966-58973.	8.0	5
131	Optothermoplasmonic Patterning: Optothermoplasmonic Nanolithography for Onâ€Đemand Patterning of 2D Materials (Adv. Funct. Mater. 41/2018). Advanced Functional Materials, 2018, 28, 1870299.	14.9	4
132	Detecting Diabetes-Induced Abnormal Chirality in Urine via Accumulation-Assisted Plasmonic Chiral Sensing. , 2020, , .		4
133	Molecular Plasmonics: From Molecular-Scale Measurements and Control to Applications. ACS Symposium Series, 2016, , 23-52.	0.5	2
134	Chiral Metamaterials: Roomâ€Temperature Active Modulation of Valley Dynamics in a Monolayer Semiconductor through Chiral Purcell Effects (Adv. Mater. 49/2019). Advanced Materials, 2019, 31, 1970347.	21.0	2
135	Optical Biosensing: Sensitivityâ€Enhancing Strategies in Optical Biosensing (Small 4/2021). Small, 2021, 17, 2170016.	10.0	2
136	Controlling the polarization of chiral dipolar emission with a spherical dielectric nanoantenna. Journal of Chemical Physics, 2021, 155, 224110.	3.0	2
137	Roomâ€Temperature Observation of Nearâ€Intrinsic Exciton Linewidth in Monolayer WS ₂ (Adv. Mater. 15/2022). Advanced Materials, 2022, 34, .	21.0	2
138	Plasmofluidics: Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale (Small 35/2015). Small, 2015, 11, 4422-4422.	10.0	1
139	Multiphoton Plasmonics: Regioselective Localization and Tracking of Biomolecules on Single Gold Nanoparticles (Adv. Sci. 11/2015). Advanced Science, 2015, 2, .	11.2	1
140	Moiré Metamaterials and Metasurfaces: Moiré Metamaterials and Metasurfaces (Advanced Optical) Tj ETQq	0	[/Qverlock 10
141	Fano Resonances: Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature (Adv. Mater. 22/2018). Advanced Materials, 2018, 30, 1870155.	21.0	1
142	Plasmofluidics for Biosensing and Medical Diagnostics. , 2018, , 213-247.		1
143	Optoelectronic Thinning of Transition Metal Dichalcogenides for Device Fabrication. , 2020, ,		1
144	Dielectric Nanospheres: Directional Modulation of Exciton Emission Using Single Dielectric	21.0	1

Dielectric Nanospheres: Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres (Adv. Mater. 20/2021). Advanced Materials, 2021, 33, 2170153. 144

#	Article	IF	CITATIONS
145	Nanoradiator-Mediated Deterministic Opto-Thermoelectric Manipulation. , 2019, , .		1
146	Opto-thermoelectric Speckle Tweezers. , 2020, , .		1
147	Reconfigurable Assembly of Chiral Metamaterials on Solid Substrates. , 2020, , .		1
148	Engineering Dielectric Metasurfaces for Chirality-Sorting Optical Forces and Fano-Interference-Enhanced Chirality. , 2020, , .		1
149	Plasmonic Metasurfaces: Tunable Graphene Metasurfaces with Gradient Features by Self-Assembly-Based Moiré Nanosphere Lithography (Advanced Optical Materials 12/2016). Advanced Optical Materials, 2016, 4, 1904-1904.	7.3	0
150	Enantiodiscrimination: Moiré Chiral Metamaterials (Advanced Optical Materials 16/2017). Advanced Optical Materials, 2017, 5, .	7.3	0
151	Dark Excitons: Darkâ€Excitonâ€Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer WS ₂ at Room Temperature (Small 31/2019). Small, 2019, 15, 1970164.	10.0	0
152	Nanophotonics and optoelectronics based on two-dimensional MoS2. , 2020, , 121-137.		0
153	Optothermal Manipulation of Liquid Droplets. , 2021, , .		0
154	Plasmonic Nanotweezers and Nanosensors for Pointâ€ofâ€Care Applications (Advanced Optical Materials) Tj ET	Qq0 0 0 rg	gBT_/Overlock
155	Symmetric and isotropic micro/nanorotors driven by a plane-polarized gaussian laser beam. , 2021, , .		0
156	A Deep Mixture Density Network for On-Demand Inverse Design of Thin Film Reflectors. , 2021, , .		0
157	Plasmonic Nanostructures: Controlling Plasmonâ€Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules (Small 38/2017). Small, 2017, 13, .	10.0	0
158	Accumulation-Driven Surfactant-Free Synthesis of Architectured Immiscible Metallic Nanoalloys with Enhanced Catalysis. SSRN Electronic Journal, 0, , .	0.4	0
159	Manipulating Fano coupling in all-dielectric meta-molecules. , 2019, , .		0
160	Manipulating Fano coupling in the opto-thermoelectric trap. , 2019, , .		0
161	Active Modulation of Valley Excitons in a Monolayer WSe2 via Chiral Metamaterials. , 2020, , .		0
162	Quantifying Thermo-Electro-Mechanics for Manipulation and Rotation of single Dielectric particles under Laser Illumination. , 2020, , .		0

#	ARTICLE	IF	CITATIONS
163	Tunable Chiroptical Coupling and Valley Dynamics using Active Chiral Metamaterials. , 2020, , .		0
164	Deep Convolutional Neural Network for the Inverse Design of Layered Photonic Structures. , 2020, , .		0
165	Modulating Chiroptical Coupling and Light-Valley Interactions with Active Chiral Metamaterials. , 2020, , .		Ο
166	Perfluoropentane-in-Water Biphasic System for Low-Power Photothermal Bubble Generation and Sensitive Immunoassay. , 2020, , .		0
167	Microbubble-Assisted Preconcentration and Ultrasensitive Detection of Biomolecules Using Plasmonic Chiral Metamaterials. , 2020, , .		Ο
168	A Biphasic Liquid System for Low-Power Optothermal Bubble Generation and Enhanced Surface Binding of Proteins. , 2020, , .		0
169	Optical Manipulation and Assembly of Colloidal Particles on Solid Substrates. , 2020, , .		0
170	Solid-Phase Optical Manipulation and Assembly of Colloidal Particles. , 2020, , .		0
171	Microbubble-Assisted Concentration and Ultrasensitive Detection of Biomolecules Using Plasmonic Chiral Metamaterials. , 2020, , .		Ο
172	Reconfigurable Assembly of Chiral Nanostructures on Solid Substrates. , 2020, , .		0
173	Quantifying the Response of Diverse Nanoparticles Towards Laser-Induced Thermoelectric Field to Enhance Applications in Nanorobotics. , 2020, , .		Ο