
Maria Cristina Digilio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6782829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature Differentially Influences the Capacity of Trichoderma Species to Induce Plant Defense Responses in Tomato Against Insect Pests. Frontiers in Plant Science, 2021, 12, 678830.	3.6	24
2	Selection of Endophytic Beauveria bassiana as a Dual Biocontrol Agent of Tomato Pathogens and Pests. Pathogens, 2021, 10, 1242.	2.8	28
3	Zucchini Plants Alter Gene Expression and Emission of (E)-β-Caryophyllene Following Aphis gossypii Infestation. Frontiers in Plant Science, 2020, 11, 592603.	3.6	7
4	Transcriptome and Metabolome Reprogramming in Tomato Plants by Trichoderma harzianum strain T22 Primes and Enhances Defense Responses Against Aphids. Frontiers in Physiology, 2019, 10, 745.	2.8	116
5	Trichoderma atroviride P1 Colonization of Tomato Plants Enhances Both Direct and Indirect Defense Barriers Against Insects. Frontiers in Physiology, 2019, 10, 813.	2.8	51
6	Chlamyphilone, a Novel Pochonia chlamydosporia Metabolite with Insecticidal Activity. Molecules, 2019, 24, 750.	3.8	12
7	De Novo Transcriptome Assembly of Cucurbita Pepo L. Leaf Tissue Infested by Aphis Gossypii. Data, 2018, 3, 36.	2.3	8
8	Plant response to feeding aphids promotes aphid dispersal. Entomologia Experimentalis Et Applicata, 2018, 166, 386-394.	1.4	14
9	Secondary metabolites from the endophytic fungus <i>Talaromyces pinophilus</i> . Natural Product Research, 2017, 31, 1778-1785.	1.8	85
10	<i>Trichoderma harzianum</i> enhances tomato indirect defense against aphids. Insect Science, 2017, 24, 1025-1033.	3.0	69
11	Prosystemin Overexpression in Tomato Enhances Resistance to Different Biotic Stresses by Activating Genes of Multiple Signaling Pathways. Plant Molecular Biology Reporter, 2015, 33, 1270-1285.	1.8	56
12	Host regulation and nutritional exploitation by parasitic wasps. Current Opinion in Insect Science, 2014, 6, 74-79.	4.4	41
13	Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genomics, 2013, 14, 515.	2.8	103
14	Tomato Below Ground–Above Ground Interactions: <i>Trichoderma longibrachiatum</i> Affects the Performance of <i>Macrosiphum euphorbiae</i> and Its Natural Antagonists. Molecular Plant-Microbe Interactions, 2013, 26, 1249-1256.	2.6	103
15	Interactions between tomato volatile organic compounds and aphid behaviour. Journal of Plant Interactions, 2012, 7, 322-325.	2.1	32
16	Interactions between <i>Bt</i> -expressing tomato and non-target insects: the aphid <i>Macrosiphum euphorbiae</i> and its natural enemies. Journal of Plant Interactions, 2012, 7, 71-77.	2.1	15
17	Molecular and chemical mechanisms involved in aphid resistance in cultivated tomato. New Phytologist, 2010, 187, 1089-1101.	7.3	33
18	Bioassay-oriented isolation of an insecticide from Ailanthus altissima. Journal of Plant Interactions, 2009. 4. 119-123.	2.1	18

#	Article	IF	CITATIONS
19	The Chitinase A from the baculovirus AcMNPV enhances resistance to both fungi and herbivorous pests in tobacco. Transgenic Research, 2008, 17, 557-571.	2.4	43
20	Belowground Mycorrhizal Endosymbiosis and Aboveground Insects: Can Multilevel Interactions be Exploited for a Sustainable Control of Pests?. Soil Biology, 2008, , 125-152.	0.8	1
21	Insecticide activity of Mediterranean essential oils. Journal of Plant Interactions, 2008, 3, 17-23.	2.1	62
22	Aphid-plant interactions: a review. Journal of Plant Interactions, 2008, 3, 223-232.	2.1	128
23	Host-locating response by the aphid parasitoid <i>Aphidius ervi</i> to tomato plant volatiles. Journal of Plant Interactions, 2007, 2, 175-183.	2.1	72
24	Systemin Regulates Both Systemic and Volatile Signaling in Tomato Plants. Journal of Chemical Ecology, 2007, 33, 669-681.	1.8	76
25	Do interactions between plant roots and the rhizosphere affect parasitoid behaviour?. Ecological Entomology, 2004, 29, 753-756.	2.2	175
26	Absorption of sugars and amino acids by the epidermis of Aphidius ervi larvae. Journal of Insect Physiology, 2003, 49, 1115-1124.	2.0	28
27	Metabolic and symbiotic interactions in amino acid pools of the pea aphid, Acyrthosiphon pisum, parasitized by the braconid Aphidius ervi. Journal of Insect Physiology, 2002, 48, 507-516.	2.0	85
28	Pea aphid clonal resistance to the endophagous parasitoid Aphidius ervi. Journal of Insect Physiology, 2002, 48, 971-980.	2.0	47
29	Larval anatomy and structure of absorbing epithelia in the aphid parasitoid Aphidius ervi Haliday (Hymenoptera, Braconidae). Arthropod Structure and Development, 2001, 30, 27-37.	1.4	46
30	Host castration by Aphidius ervi venom proteins. Journal of Insect Physiology, 2000, 46, 1041-1050.	2.0	109
31	Development and nutrition of the braconid wasp,Aphidius ervi in aposymbiotic host aphids. Archives of Insect Biochemistry and Physiology, 1999, 40, 53-63.	1.5	44
32	Host regulation effects of ovary fluid and venom of Aphidius ervi (Hymenoptera: Braconidae). Journal of Insect Physiology, 1998, 44, 779-784.	2.0	42
33	Biochemical and metabolic alterations inAcyrthosiphon pisum parasitized byAphidius ervi. Archives of Insect Biochemistry and Physiology, 1995, 30, 351-367.	1.5	68
34	Characterization of Aphidius ervi (hymenoptera, braconidae) ribosomal genes and identification of site-specific insertion elements belonging to the non-LTR retrotransposon family. Insect Biochemistry and Molecular Biology, 1995, 25, 603-612.	2.7	5
35	Host recognition and acceptance behaviour in two aphid parasitoid species: <i>Aphidius ervi</i> and <i>Aphidius microlophii</i> (Hymenoptera: Braconidae). Bulletin of Entomological Research, 1994, 84, 57-64.	1.0	39