Feng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6782618/publications.pdf

Version: 2024-02-01

			,	26567	3.	5952
154		10,656		56		97
paper	3	citations		h-index		g-index
			. '			
1.65	7	1.67		1.67		0076
167		167		167		8276
all doc	28	docs citations		times ranked		citing authors

#	Article	IF	CITATIONS
1	Oxygen-controlled photo-reforming of biopolyols to CO over Z-scheme CdS@g-C3N4. CheM, 2022, 8, 465-479.	5.8	61
2	Oxygen-implanted MoS ₂ nanosheets promoting quinoline synthesis from nitroarenes and aliphatic alcohols <i>via</i> an integrated oxidation transfer hydrogenation–cyclization mechanism. Green Chemistry, 2022, 24, 1704-1713.	4.6	7
3	Photo–Thermo-Dual Catalysis of Levulinic Acid and Levulinate Ester to γ-Valerolactone. ACS Catalysis, 2022, 12, 1677-1685.	5.5	21
4	Catalytic production of low-carbon footprint sustainable natural gas. Nature Communications, 2022, 13, 258.	5.8	26
5	Polar hydrogen species mediated nitroarenes selective reduction to anilines over an [FeMo]S _{<i>x</i>} catalyst. Dalton Transactions, 2022, 51, 1553-1560.	1.6	3
6	Photocatalytic conversion of waste plastics to low carbon number organic products. Chinese Journal of Catalysis, 2022, 43, 589-594.	6.9	20
7	Radical generation and fate control for photocatalytic biomass conversion. Nature Reviews Chemistry, 2022, 6, 197-214.	13.8	69
8	Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future. Chemical Society Reviews, 2022, 51, 1608-1628.	18.7	89
9	A steric hindrance alleviation strategy to enhance the photo-switching efficiency of azobenzene functionalized metal–organic frameworks toward tailorable carbon dioxide capture. Journal of Materials Chemistry A, 2022, 10, 8303-8308.	5.2	11
10	Interfacial Tandem Catalysis for Ethylene Carbonylation and C–C Coupling to 3-Pentanone on Rh/Ceria. ACS Catalysis, 2022, 12, 3286-3290.	5.5	6
11	Can Li: A Career in Catalysis. ACS Catalysis, 2022, 12, 3063-3082.	5.5	8
12	Integrated carbon capture and utilization: Synergistic catalysis between highly dispersed Ni clusters and ceria oxygen vacancies. Chemical Engineering Journal, 2022, 437, 135394.	6.6	33
13	Opportunities and future directions for photocatalytic biomass conversion to value-added chemicals. Chem Catalysis, 2022, 2, 644-646.	2.9	3
14	Photocatalytic Conversion of Plastic Waste: From Photodegradation to Photosynthesis. Advanced Energy Materials, 2022, 12, .	10.2	64
15	Plasma-assisted construction of CdO quantum dots/CdS semi-coherent interface for the photocatalytic bio-CO evolution. Chem Catalysis, 2022, 2, 1394-1406.	2.9	23
16	Opportunities for electrocatalytic biomass valorization. Chem Catalysis, 2022, 2, 641-643.	2.9	11
17	Synthesis of Silicoâ€Phosphoâ€Aluminum Nanosheets by Adding Amino Acid and its Catalysis in the Conversion of Furfuryl Alcohol to Fuel Additives. ChemSusChem, 2022, 15, .	3.6	3
18	Low-Work Function Metals Boost Selective and Fast Scission of Methanol C–H Bonds. ACS Catalysis, 2022, 12, 6375-6384.	5.5	19

#	Article	IF	CITATIONS
19	Unveiling the highly disordered NbO6 units as electron-transfer sites in Nb2O5 photocatalysis with N-hydroxyphthalimide under visible light irradiation. Chinese Journal of Catalysis, 2022, 43, 1894-1905.	6.9	9
20	Water promoted photocatalytic transfer hydrogenation of furfural to furfural alcohol over ultralow loading metal supported on TiO2. Journal of Energy Chemistry, 2022, 73, 259-267.	7.1	14
21	An economic analysis of twenty light olefin production pathways. Journal of Energy Chemistry, 2021, 56, 193-202.	7.1	64
22	Guidelines for performing lignin-first biorefining. Energy and Environmental Science, 2021, 14, 262-292.	15.6	416
23	Catalytic cleavage of lignin C O and C C bonds. Advances in Inorganic Chemistry, 2021, 77, 175-218.	0.4	5
24	Heterogeneous Ru/TiO ₂ for hydroaminomethylation of olefins: multicomponent synthesis of amines. Green Chemistry, 2021, 23, 2722-2728.	4.6	6
25	Nb ₂ O ₅ â€Based Photocatalysts. Advanced Science, 2021, 8, 2003156.	5.6	92
26	Surface Sulfate Ion on CdS Catalyst Enhances Syngas Generation from Biopolyols. Journal of the American Chemical Society, 2021, 143, 6533-6541.	6.6	87
27	Controlling Radical Intermediates in Photocatalytic Conversion of Low-Carbon-Number Alcohols. ACS Sustainable Chemistry and Engineering, 2021, 9, 6188-6202.	3.2	18
28	Advancing development of biochemicals through the comprehensive evaluation of bio-ethylene glycol. Chemical Engineering Journal, 2021, 411, 128516.	6.6	19
29	Simultaneously Enhanced Activity and Selectivity for C(sp3)–H Bond Oxidation Under Visible Light by Nitrogen Doping. Transactions of Tianjin University, 2021, 27, 331-337.	3.3	8
30	From nano aggregates to nano plates: The roles of gelatin in the crystallization of titanium silicate-1. Microporous and Mesoporous Materials, 2021, 321, 111100.	2.2	6
31	Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catalysis, 2021, 11, 9618-9678.	5.5	146
32	Catalysis of Positively Charged Ru Species Stabilized by Hydroxyapatite in Amine Formylation. ChemCatChem, 2021, 13, 4159-4163.	1.8	2
33	Tuning the Pt species on Nb2O5 by support-induced modification in the photocatalytic transfer hydrogenation of phenylacetylene. Applied Catalysis B: Environmental, 2021, 298, 120554.	10.8	30
34	Defect-Dependent Selective C–H/C–C Bond Cleavage of Propane in the Presence of CO ₂ over FeNi/Ceria Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 17301-17309.	3.2	5
35	Visible-Light-Driven Selective Oxidation of Toluene into Benzaldehyde over Nitrogen-Modified Nb ₂ O ₅ Nanomeshes. ACS Catalysis, 2020, 10, 1324-1333.	5.5	75
36	Visible-Light-Induced Oxidative Lignin C–C Bond Cleavage to Aldehydes Using Vanadium Catalysts. ACS Catalysis, 2020, 10, 632-643.	5.5	106

#	Article	IF	CITATIONS
37	Photocatalytic Coproduction of Deoxybenzoin and H ₂ through Tandem Redox Reactions. ACS Catalysis, 2020, 10, 762-769.	5.5	55
38	Transformations of Biomass, Its Derivatives, and Downstream Chemicals over Ceria Catalysts. ACS Catalysis, 2020, 10, 8788-8814.	5.5	75
39	Photocatalytic transformations of lignocellulosic biomass into chemicals. Chemical Society Reviews, 2020, 49, 6198-6223.	18.7	374
40	Catalytic Hydrodeoxygenation of Methyl Stearate and Microbial Lipids to Diesel-Range Alkanes over Pd/HPA-SiO ₂ Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 17440-17450.	1.8	15
41	Heteroatom-participated lignin cleavage to functionalized aromatics. Chemical Society Reviews, 2020, 49, 3748-3763.	18.7	84
42	Amineâ€Mediated Bond Cleavage in Oxidized Lignin Models. ChemSusChem, 2020, 13, 4660-4665.	3.6	22
43	Photo splitting of bio-polyols and sugars to methanol and syngas. Nature Communications, 2020, 11, 1083.	5.8	72
44	Enhanced photocatalytic alkane production from fatty acid decarboxylation via inhibition of radical oligomerization. Nature Catalysis, 2020, 3, 170-178.	16.1	93
45	Linear-regioselective hydromethoxycarbonylation of styrene using Ru-clusters/CeO2 catalyst. Chinese Journal of Catalysis, 2020, 41, 963-969.	6.9	11
46	Photocatalytic transfer hydrogenolysis of aromatic ketones using alcohols. Green Chemistry, 2020, 22, 3802-3808.	4.6	19
47	Catalytic Lignin Depolymerization to Aromatic Chemicals. Accounts of Chemical Research, 2020, 53, 470-484.	7.6	280
48	Photocatalytic Cleavage of Aryl Ether in Modified Lignin to Non-phenolic Aromatics. ACS Catalysis, 2019, 9, 8843-8851.	5.5	55
49	Catalytic Scissoring of Lignin into Aryl Monomers. Advanced Materials, 2019, 31, e1901866.	11.1	112
50	Microreactor-assisted synthesis of a nickel-based infinite coordination polymer and its application in the selective adsorption of alcohols. Inorganic Chemistry Communication, 2019, 109, 107566.	1.8	2
51	Effectiveness of metal oxide catalysts for the degradation of 1,4-dioxane. RSC Advances, 2019, 9, 27042-27049.	1.7	7
52	Synergistic bimetallic RuMo catalysts for selective rearrangement of furfural to cyclopentanol in aqueous phase. Catalysis Communications, 2019, 129, 105745.	1.6	19
53	Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans. Nature Energy, 2019, 4, 575-584.	19.8	268
54	Steering charge kinetics in W2C@C/TiO2 heterojunction architecture: Efficient solar-light-driven hydrogen generation. Applied Catalysis B: Environmental, 2019, 255, 117760.	10.8	25

#	Article	IF	CITATIONS
55	Product-oriented decomposition of lignocellulose catalyzed by novel polyoxometalates-ionic liquid mixture. Bioresource Technology, 2019, 283, 174-183.	4.8	15
56	Functionalized spirolactones by photoinduced dearomatization of biaryl compounds. Chemical Science, 2019, 10, 3681-3686.	3.7	46
57	Selective reduction of CO2 to CO under visible light by controlling coordination structures of CeOx-S/Znln2S4 hybrid catalysts. Applied Catalysis B: Environmental, 2019, 245, 262-270.	10.8	53
58	Acid-Promoter-Free Ethylene Methoxycarbonylation over Ru-Clusters/Ceria: The Catalysis of Interfacial Lewis Acid–Base Pair. Journal of the American Chemical Society, 2018, 140, 4172-4181.	6.6	157
59	Photocatalytic Cleavage of C–C Bond in Lignin Models under Visible Light on Mesoporous Graphitic Carbon Nitride through π–Ĩ€ Stacking Interaction. ACS Catalysis, 2018, 8, 4761-4771.	5.5	205
60	Pr-Doped CeO ₂ Catalyst in the Prins Condensationâ€"Hydrolysis Reaction: Are All of the Defect Sites Catalytically Active?. ACS Catalysis, 2018, 8, 2635-2644.	5.5	64
61	Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catalysis, 2018, 8, 2129-2165.	5.5	188
62	Rh(III)-Catalyzed Acceptorless Dehydrogenative Coupling of (Hetero)arenes with 2-Carboxyl Allylic Alcohols. Organic Letters, 2018, 20, 740-743.	2.4	44
63	The in situ transformation of the co-product formaldehyde in the reversible hydrolysis of 1,3-dixoane to obtain 1,3-propanediol efficiently. Green Chemistry, 2018, 20, 1455-1458.	4.6	1
64	NH ₂ OH–Mediated Lignin Conversion to Isoxazole and Nitrile. ACS Sustainable Chemistry and Engineering, 2018, 6, 3748-3753.	3.2	39
65	Generation and Confinement of Long-Lived $\langle i \rangle N \langle i \rangle$ -Oxyl Radical and Its Photocatalysis. Journal of the American Chemical Society, 2018, 140, 2032-2035.	6.6	89
66	Carbon Modification of Nickel Catalyst for Depolymerization of Oxidized Lignin to Aromatics. ACS Catalysis, 2018, 8, 1614-1620.	5.5	134
67	Selective production of phase-separable product from a mixture of biomass-derived aqueous oxygenates. Nature Communications, 2018, 9, 5183.	5.8	42
68	Low-carbon roadmap of chemical production: A case study of ethylene in China. Renewable and Sustainable Energy Reviews, 2018, 97, 580-591.	8.2	60
69	The Synthesis of Quinazolinones from Olefins, CO, and Amines over a Heterogeneous Ruâ€clusters/Ceria Catalyst. Angewandte Chemie - International Edition, 2018, 57, 12308-12312.	7.2	32
70	The Synthesis of Quinazolinones from Olefins, CO, and Amines over a Heterogeneous Ru lusters/Ceria Catalyst. Angewandte Chemie, 2018, 130, 12488-12492.	1.6	3
71	Dealkylation of Lignin to Phenol via Oxidation–Hydrogenation Strategy. ACS Catalysis, 2018, 8, 6837-6843.	5.5	74
72	Life cycle assessment of primary energy demand and greenhouse gas (GHG) emissions of four propylene production pathways in China. Journal of Cleaner Production, 2017, 163, 285-292.	4.6	50

#	Article	IF	Citations
73	New protocol of copper-catalyzed oxidative C(CO) C bond cleavage of aryl and aliphatic ketones to organic acids using O2 as the terminal oxidant. Journal of Catalysis, 2017, 346, 170-179.	3.1	64
74	Metal-free protocol for the synthesis of N-arylpyrrolidines catalyzed by hydrogen iodine. Catalysis Communications, 2017, 94, 56-59.	1.6	9
75	Visible Light Gold Nanocluster Photocatalyst: Selective Aerobic Oxidation of Amines to Imines. ACS Catalysis, 2017, 7, 3632-3638.	5.5	165
76	Yin and Yang Dual Characters of CuO _{<i>x</i>} Clusters for C–C Bond Oxidation Driven by Visible Light. ACS Catalysis, 2017, 7, 3850-3859.	5.5	103
77	Visible-Light-Driven Self-Hydrogen Transfer Hydrogenolysis of Lignin Models and Extracts into Phenolic Products. ACS Catalysis, 2017, 7, 4571-4580.	5.5	191
78	Promoting Lignin Depolymerization and Restraining the Condensation via an Oxidationâ ⁻ 'Hydrogenation Strategy. ACS Catalysis, 2017, 7, 3419-3429.	5.5	172
79	Oxidative C(OH) C bond cleavage of secondary alcohols to acids over a copper catalyst with molecular oxygen as the oxidant. Journal of Catalysis, 2017, 348, 160-167.	3.1	72
80	Photocatalytic coupling of amines to imidazoles using a Mo–Znln ₂ S ₄ catalyst. Green Chemistry, 2017, 19, 5172-5177.	4.6	44
81	Peculiar hydrogenation reactivity of Ni–NiÎ+ clusters stabilized by ceria in reducing nitrobenzene to azoxybenzene. Journal of Catalysis, 2017, 353, 107-115.	3.1	36
82	Sell a dummy: Adjacent functional group modification strategy for the catalytic cleavage of lignin β–O–4 linkage. Chinese Journal of Catalysis, 2017, 38, 1102-1107.	6.9	32
83	Ru/ceria-catalyzed direct formylation of amines and CO to produce formamides. Green Chemistry, 2017, 19, 88-92.	4.6	18
84	Fluoride-free and low concentration template synthesis of hierarchical Sn-Beta zeolites: efficient catalysts for conversion of glucose to alkyl lactate. Green Chemistry, 2017, 19, 692-701.	4.6	88
85	Acid promoted C–C bond oxidative cleavage of β-O-4 and β-1 lignin models to esters over a copper catalyst. Green Chemistry, 2017, 19, 702-706.	4.6	113
86	Synthesis of 1,3-Diols from Isobutene and HCHO via Prins Condensation-Hydrolysis Using CeO2 Catalysts: Effects of Crystal Plane and Oxygen Vacancy. Inorganics, 2017, 5, 75.	1.2	5
87	Chemoselective transfer hydrogenation to nitroarenes mediated by oxygen-implanted MoS2. Chinese Journal of Catalysis, 2016, 37, 1569-1577.	6.9	19
88	Photocatalytic Oxidation–Hydrogenolysis of Lignin β-O-4 Models via a Dual Light Wavelength Switching Strategy. ACS Catalysis, 2016, 6, 7716-7721.	5.5	165
89	Cleavage of the lignin β-O-4 ether bond via a dehydroxylation–hydrogenation strategy over a NiMo sulfide catalyst. Green Chemistry, 2016, 18, 6545-6555.	4.6	80
90	Two-Step, Catalytic C–C Bond Oxidative Cleavage Process Converts Lignin Models and Extracts to Aromatic Acids. ACS Catalysis, 2016, 6, 6086-6090.	5.5	207

#	Article	IF	CITATIONS
91	Epoxide hydrolysis and alcoholysis reactions over crystalline Mo–V–O oxide. RSC Advances, 2016, 6, 70842-70847.	1.7	11
92	Î ² -O-4 Bond Cleavage Mechanism for Lignin Model Compounds over Pd Catalysts Identified by Combination of First-Principles Calculations and Experiments. ACS Catalysis, 2016, 6, 5589-5598.	5.5	116
93	Transfer hydrogenation of nitroarenes to arylamines catalysed by an oxygen-implanted MoS 2 catalyst. Applied Catalysis A: General, 2016, 525, 85-93.	2.2	31
94	Thermally robust silica-enclosed Au 25 nanocluster and its catalysis. Chinese Journal of Catalysis, 2016, 37, 1787-1793.	6.9	20
95	Conversion of Isobutene and Formaldehyde to Diol using Praseodymium-Doped CeO ₂ Catalyst. ACS Catalysis, 2016, 6, 8248-8254.	5.5	55
96	Transfer hydrogenation of nitroarenes with hydrazine at near-room temperature catalysed by a MoO ₂ catalyst. Green Chemistry, 2016, 18, 2435-2442.	4.6	72
97	Oxidative coupling of anilines to azobenzenes using heterogeneous manganese oxide catalysts. Catalysis Science and Technology, 2016, 6, 1940-1945.	2.1	26
98	The cascade synthesis of α,β-unsaturated ketones via oxidative C–C coupling of ketones and primary alcohols over a ceria catalyst. Catalysis Science and Technology, 2016, 6, 1693-1700.	2.1	32
99	CN and NH Bond Metathesis Reactions Mediated by Carbon Dioxide. ChemSusChem, 2015, 8, 2066-2072.	3.6	24
100	Formal Direct Crossâ€Coupling of Phenols with Amines. Angewandte Chemie - International Edition, 2015, 54, 14487-14491.	7.2	157
101	Cuprous Oxide Catalyzed Oxidative CC Bond Cleavage for CN Bond Formation: Synthesis of Cyclic Imides from Ketones and Amines. Angewandte Chemie - International Edition, 2015, 54, 14061-14065.	7.2	37
102	The cascade synthesis of quinazolinones and quinazolines using an $\hat{l}\pm\text{-MnO}<\text{sub}>2\text{ catalyst}$ and tert-butyl hydroperoxide (TBHP) as an oxidant. Chemical Communications, 2015, 51, 9205-9207.	2.2	120
103	An investigation of the effects of CeO2 crystal planes on the aerobic oxidative synthesis of imines from alcohols and amines. Chinese Journal of Catalysis, 2015, 36, 1623-1630.	6.9	52
104	Preferential cleavage of C C bonds over C N bonds at interfacial CuO Cu2O sites. Journal of Catalysis, 2015, 330, 458-464.	3.1	18
105	Depolymerization of cellulose to glucose by oxidation–hydrolysis. Green Chemistry, 2015, 17, 1519-1524.	4.6	74
106	Hydrogen bond distinction and activation upon catalytic etherification of hydroxyl compounds. Chemical Communications, 2015, 51, 1077-1080.	2,2	35
107	lmine-linked conjugated organic polymer bearing bis(imino)pyridine ligands and its catalytic application in C–C coupling reactions. Chinese Journal of Catalysis, 2014, 35, 540-545.	6.9	7
108	What and where are the active sites of oxide-supported nanostructured metal catalysts?. Chinese Journal of Catalysis, 2014, 35, 453-456.	6.9	5

#	Article	IF	CITATIONS
109	Transformylating amine with DMF to formamide over CeO2 catalyst. Chemical Communications, 2014, 50, 2438.	2.2	59
110	tert-Butyl hydroperoxide (TBHP)-mediated oxidative self-coupling of amines to imines over a α-MnO ₂ catalyst. Green Chemistry, 2014, 16, 2523-2527.	4.6	56
111	Organic linker geometry controlled synthesis of coordination polymer spheres and their thermal transformation to yolk–shell metal oxides. Journal of Materials Chemistry A, 2014, 2, 15480-15487.	5.2	11
112	Investigations on the crystal plane effect of ceria on gold catalysis in the oxidative dehydrogenation of alcohols and amines in the liquid phase. Chemical Communications, 2014, 50, 292-294.	2.2	93
113	Nanocoating of magnetic cores with sulfonic acid functionalized shells for the catalytic dehydration of fructose to 5-hydroxymethylfurfural. Chinese Journal of Catalysis, 2014, 35, 703-708.	6.9	25
114	Promoted role of Cu(NO3)2 on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over VOSO4. Applied Catalysis A: General, 2014, 482, 231-236.	2.2	46
115	Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy and Environmental Science, 2013, 6, 994.	15.6	780
116	Heterogeneous Ceria Catalyst with Water-Tolerant Lewis Acidic Sites for One-Pot Synthesis of 1,3-Diols via Prins Condensation and Hydrolysis Reactions. Journal of the American Chemical Society, 2013, 135, 1506-1515.	6.6	237
117	Lignosulfonate-based heterogeneous sulfonic acid catalyst for hydrolyzing glycosidic bonds of polysaccharides. Journal of Molecular Catalysis A, 2013, 377, 102-107.	4.8	45
118	Immobilized Ru Clusters in Nanosized Mesoporous Zirconium Silica for the Aqueous Hydrogenation of Furan Derivatives at Room Temperature. ChemCatChem, 2013, 5, 2822-2826.	1.8	89
119	Insights into support wettability in tuning catalytic performance in the oxidation of aliphatic alcohols to acids. Chemical Communications, 2013, 49, 6623.	2.2	47
120	Hydrogenation and cleavage of the C-O bonds in the lignin model compound phenethyl phenyl ether over a nickel-based catalyst. Chinese Journal of Catalysis, 2013, 34, 651-658.	6.9	74
121	Conversion of furfural into cyclopentanone over Ni–Cu bimetallic catalysts. Green Chemistry, 2013, 15, 1932.	4.6	294
122	Conversion of Glucose to 5-Hydroxymethylfurfural Catalyzed by Metal Halide in N,N-Dimethylacetamide. BioResources, 2013, 8, .	0.5	6
123	Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chemical Communications, 2012, 48, 7019.	2.2	219
124	4-N,N-Dimethylaminopyridine Promoted Selective Oxidation of Methyl Aromatics with Molecular Oxygen. Molecules, 2012, 17, 3957-3968.	1.7	7
125	Preparation and characterization of vanadium(IV) oxide supported on SBA-15 and its catalytic performance in benzene hydroxylation to phenol using molecular oxygen. Journal of Natural Gas Chemistry, 2012, 21, 481-487.	1.8	23
126	Organocatalytic oxidative dehydrogenation of aromatic amines forÂtheÂpreparation of azobenzenes under mild conditions. Tetrahedron, 2012, 68, 8358-8366.	1.0	35

#	Article	IF	Citations
127	Detection and Measurement of Surface Electron Transfer on Reduced Molybdenum Oxides (MoO _{<i>x</i>}) and Catalytic Activities of Au/MoO _{<i>x</i>} . Angewandte Chemie - International Edition, 2012, 51, 3883-3887.	7.2	75
128	Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen. Green Chemistry, 2011, 13, 554.	4.6	150
129	Preparation of VO2(B) Nanoflake with Glycerol as Reductant Agent and its Catalytic Application in the Aerobic Oxidation of Benzene to Phenol. Topics in Catalysis, 2011, 54, 1016-1023.	1.3	16
130	Synthesis of hierarchical AIPO-n molecular sieves templated by saccharides. Microporous and Mesoporous Materials, 2011, 144, 176-182.	2.2	33
131	A Complexation Promoted Organic Nâ€Hydroxy Catalytic System for Selective Oxidation of Toluene. Advanced Synthesis and Catalysis, 2011, 353, 226-230.	2.1	34
132	Catalytic Oxidative Dehydration of Glycerol over a Catalyst with Iron Oxide Domains Embedded in an Iron Orthovanadate Phase. ChemSusChem, 2010, 3, 1383-1389.	3.6	48
133	Catalytic performance of vanadium pyrophosphate oxides (VPO) in the oxidative dehydration of glycerol. Applied Catalysis A: General, 2010, 376, 25-32.	2.2	133
134	A Comparative Study of Variously Prepared Carbon-Supported Pt/MoO[sub x] Anode Catalysts for a Polymer Electrolyte Fuel Cell. Journal of the Electrochemical Society, 2009, 156, B1361.	1.3	11
135	Catalytic dehydration of glycerol over vanadium phosphate oxides in the presence of molecular oxygen. Journal of Catalysis, 2009, 268, 260-267.	3.1	194
136	High Catalytic Efficiency of Nanostructured Molybdenum Trioxide in the Benzylation of Arenes and an Investigation of the Reaction Mechanism. Chemistry - A European Journal, 2009, 15, 742-753.	1.7	58
137	Selective oxidation of alcohols using novel crystalline Mo-V-O oxide as heterogeneous catalyst in liquid phase with molecular oxygen. Catalysis Today, 2009, 144, 358-361.	2.2	31
138	Preparation, characterization and catalytic performance of Mo–V–O oxide layers linked by alkylamines. Chemical Communications, 2009, , 1079.	2.2	15
139	Steric Effect on the Catalytic Performance of the Selective Oxidation of Alcohols Over Novel Crystalline Mo–V–O Oxide. Topics in Catalysis, 2008, 50, 90-97.	1.3	21
140	Synthesis of Fe, Co, and Mn substituted AlPO-5 molecular sieves and their catalytic activities in the selective oxidation of cyclohexane. Journal of Porous Materials, 2008, 15, 7-12.	1.3	54
141	Aerobic oxidation of alcohols over novel crystalline MoVO oxide. Applied Catalysis A: General, 2008, 346, 155-163.	2.2	50
142	Nanostructured molybdenum oxides and their catalytic performance in the alkylation of arenes. Chemical Communications, 2008, , 3196.	2.2	26
143	Selective Oxidation of Alcohols by Orthorhombic Mo–V–O Phase with Molecular Oxygen. Chemistry Letters, 2008, 37, 184-185.	0.7	14
144	Direct Oxidation of Toluene to Benzoic Acid with Molecular Oxygen over Manganese Oxides. Catalysis Letters, 2006, 108, 137-140.	1.4	53

#	ARTICLE	IF	CITATIONS
145	Liquid-phase oxidation of toluene by molecular oxygen over copper manganese oxides. Catalysis Letters, 2006, 110, 149-154.	1.4	28
146	Liquid-phase oxidation of toluene by molecular oxygen over copper manganese oxides. Catalysis Letters, 2006, 110, 255-260.	1.4	33
147	Metal oxide nanoparticles from inorganic sources via a simple and general method. Materials Chemistry and Physics, 2006, 97, 137-142.	2.0	43
148	Catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone over Co3O4 nanocrystals with molecular oxygen. Applied Catalysis A: General, 2005, 292, 223-228.	2.2	156
149	Liquid Phase Oxidation of Toluene to Benzaldehyde with Molecular Oxygen over Copper-Based Heterogeneous Catalysts. Advanced Synthesis and Catalysis, 2005, 347, 1987-1992.	2.1	106
150	Synthesis of FeCoMnAPO-5 Molecular Sieve and Catalytic Activity in Cyclohexane Oxidation by Oxygen. Catalysis Letters, 2005, 99, 231-234.	1.4	20
151	Oxidation ofp-Cresol top-Hydroxybenzaldehyde with Molecular Oxygen in the Presence of CuMn-Oxide Heterogeneous Catalyst. Advanced Synthesis and Catalysis, 2004, 346, 633-638.	2.1	38
152	Copper and manganese: two concordant partners in the catalytic oxidation of p-cresol to p-hydroxybenzaldehyde. Chemical Communications, 2003, , 1172-1173.	2.2	51
153	Copper and Manganese: Two Concordant Partners in the Catalytic Oxidation of p-Cresol to p-Hydroxybenzaldehyde ChemInform, 2003, 34, no.	0.1	0
154	One-step heterogeneously catalytic oxidation of o-cresol by oxygen to salicylaldehyde. Chemical Communications, 2002, , 626-627.	2,2	18