
Peter J Schoenmakers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6782577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gradient selection in reversed-phase liquid chromatography. Journal of Chromatography A, 1978, 149, 519-537.	1.8	429
2	Recent Developments in Two-Dimensional Liquid Chromatography: Fundamental Improvements for Practical Applications. Analytical Chemistry, 2019, 91, 240-263.	3.2	251
3	Comprehensive two-dimensional liquid chromatography of polymers. Journal of Chromatography A, 2003, 1000, 693-709.	1.8	222
4	Systematic study of ternary solvent behaviour in reversed-phase liquid chromatography. Journal of Chromatography A, 1981, 218, 261-284.	1.8	197
5	Use of the solubility parameter for predicting selectivity and retention in chromatography. Journal of Chromatography A, 1976, 122, 185-203.	1.8	187
6	Synthesis and characterization of telechelic polymethacrylates via RAFT polymerization. Journal of Polymer Science Part A, 2005, 43, 959-973.	2.5	181
7	Optimizing separations in online comprehensive twoâ€dimensional liquid chromatography. Journal of Separation Science, 2018, 41, 68-98.	1.3	176
8	Use of gradient elution for rapid selection of isocratic conditions in reversed-phase high-performance liquid chormatography. Journal of Chromatography A, 1981, 205, 13-30.	1.8	174
9	Compehensive two-dimensional gas chromatography (GC×GC) and its applicability to the characterization of complex (petrochemical) mixtures. Journal of High Resolution Chromatography, 1997, 20, 539-544.	2.0	173
10	Description of solute retention over the full range of mobile phase compositions in reversed-phase liquid chromatography. Journal of Chromatography A, 1983, 282, 107-121.	1.8	142
11	Gas chromatographic methods for oil analysis. Journal of Chromatography A, 2002, 972, 137-173.	1.8	139
12	A protocol for designing comprehensive two-dimensional liquid chromatography separation systems. Journal of Chromatography A, 2006, 1120, 282-290.	1.8	137
13	Proper Tuning of Comprehensive Two-Dimensional Gas Chromatography (GC×GC) to Optimize the Separation of Complex Oil Fractions. Journal of High Resolution Chromatography, 2000, 23, 182-188.	2.0	136
14	Tailoring the Morphology of Methacrylate Ester-Based Monoliths for Optimum Efficiency in Liquid Chromatography. Analytical Chemistry, 2005, 77, 7342-7347.	3.2	133
15	A new measure of orthogonality for multi-dimensional chromatography. Analytica Chimica Acta, 2014, 838, 93-101.	2.6	130
16	Modelling retention in reversed-phase liquid chromatography as a function of pH and solvent composition. Journal of Chromatography A, 1992, 592, 157-182.	1.8	119
17	Comparison of comprehensive two-dimensional gas chromatography and gas chromatography – mass spectrometry for the characterization of complex hydrocarbon mixtures. Journal of Chromatography A, 2000, 892, 29-46.	1.8	119
18	Automatic Selection of Optimal Savitzkyâ^'Golay Smoothing. Analytical Chemistry, 2006, 78, 4598-4608.	3.2	111

PETER J SCHOENMAKERS

#	Article	IF	CITATIONS
19	Quantitative analysis of target components by comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2003, 1019, 15-29.	1.8	110
20	Comprehensive two-dimensional liquid chromatography for the characterization of functional acrylate polymers. Journal of Chromatography A, 2005, 1076, 51-61.	1.8	104
21	Modelling retention of ionogenic solutes in liquid chromatography as a function of pH for optimization purposes. Journal of Chromatography A, 1993, 656, 577-590.	1.8	103
22	Reducing Dilution and Analysis Time in Online Comprehensive Two-Dimensional Liquid Chromatography by Active Modulation. Analytical Chemistry, 2016, 88, 1785-1793.	3.2	93
23	Development of an algorithm for peak detection in comprehensive two-dimensional chromatography. Journal of Chromatography A, 2007, 1156, 14-24.	1.8	92
24	Challenges in polymer analysis by liquid chromatography. Polymer Chemistry, 2012, 3, 2313.	1.9	91
25	Efficiency of methacrylate monolithic columns in reversed-phase liquid chromatographic separations. Journal of Chromatography A, 2007, 1175, 81-88.	1.8	83
26	Determination of molecular weight and size distribution and branching characteristics of PVAc by means of size exclusion chromatography/multi-angle laser light scattering (SEC/MALLS). Polymer, 2004, 45, 39-48.	1.8	82
27	Effects of pH in reversed-phase liquid chromatography. Analytica Chimica Acta, 1991, 250, 1-19.	2.6	81
28	A graphical method for understanding the kinetics of peak capacity production in gradient elution liquid chromatography. Journal of Chromatography A, 2006, 1125, 177-181.	1.8	81
29	Breakthrough of polymers in interactive liquid chromatography. Journal of Chromatography A, 2002, 982, 55-68.	1.8	80
30	Mass Spectrometric Characterization of Functional Poly(methyl methacrylate) in Combination with Critical Liquid Chromatography. Analytical Chemistry, 2003, 75, 5517-5524.	3.2	80
31	Comprehensive Two-Dimensional Liquid Chromatography with Stationary-Phase-Assisted Modulation Coupled to High-Resolution Mass Spectrometry Applied to Proteome Analysis of <i>Saccharomyces cerevisiae</i> . Analytical Chemistry, 2015, 87, 5387-5394.	3.2	80
32	Retention and selectivity characteristics of a non-polar perfluorinated stationary phase for liquid chromatography. Journal of Chromatography A, 1981, 218, 443-454.	1.8	79
33	Controlling the surface chemistry and chromatographic properties of methacrylate-ester-based monolithic capillary columnsviaphotografting. Journal of Separation Science, 2007, 30, 407-413.	1.3	78
34	Untargeted Comprehensive Two-Dimensional Liquid Chromatography Coupled with High-Resolution Mass Spectrometry Analysis of Rice Metabolome Using Multivariate Curve Resolution. Analytical Chemistry, 2017, 89, 7675-7683.	3.2	72
35	Comprehensive multi-dimensional chromatographic studies on the separation of saturated hydrocarbon ring structures in petrochemical samples. Journal of Chromatography A, 2005, 1086, 12-20.	1.8	71
36	Theories to support method development in comprehensive twoâ€dimensional liquid chromatography – A review. Journal of Separation Science, 2012, 35, 1697-1711.	1.3	70

#	Article	IF	CITATIONS
37	RES, an expert system for the set-up and interpretation of a ruggedness test in HPLC method validation. Chemometrics and Intelligent Laboratory Systems, 1991, 10, 337-347.	1.8	67
38	Performance limits of monolithic and packed capillary columns in high-performance liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 2006, 1104, 256-262.	1.8	66
39	Band broadening in size-exclusion chromatography of polydisperse samples. Journal of Chromatography A, 2004, 1060, 237-252.	1.8	65
40	Fast and efficient size-based separations of polymers using ultra-high-pressure liquid chromatography. Journal of Chromatography A, 2011, 1218, 1509-1518.	1.8	63
41	Program for the interpretive optimization of two-dimensional resolution. Journal of Chromatography A, 2016, 1450, 29-37.	1.8	63
42	Molar-Mass Characterization of Cationic Polymers for Gene Delivery by Aqueous Size-Exclusion Chromatography. Pharmaceutical Research, 2006, 23, 595-603.	1.7	62
43	Lattice models for the description of partitioning/ adsorption and retention in reversed-phase liquid chromatography, including surface and shape effects. Journal of Chromatography A, 1993, 656, 135-196.	1.8	61
44	Comprehensive two-dimensional liquid chromatography with on-line Fourier-transform-infrared-spectroscopy detection for the characterization of copolymers. Journal of Chromatography A, 2005, 1098, 104-110.	1.8	59
45	Characterization of polymer-based monolithic capillary columns by inverse size-exclusion chromatography and mercury-intrusion porosimetry. Journal of Chromatography A, 2008, 1182, 161-168.	1.8	59
46	Comparison of on-line flow-cell and off-line solvent-elimination interfaces for size-exclusion chromatography and Fourier-transform infrared spectroscopy in polymer analysis. Journal of Chromatography A, 2003, 1017, 83-96.	1.8	58
47	Multi-Dimensional Separations of Polymers. Analytical Chemistry, 2014, 86, 6172-6179.	3.2	58
48	High-efficiency liquid chromatography–mass spectrometry separations with 50mm, 250mm, and 1m long polymer-based monolithic capillary columns for the characterization of complex proteolytic digests. Journal of Chromatography A, 2010, 1217, 6610-6615.	1.8	57
49	Recent applications of retention modelling in liquid chromatography. Journal of Separation Science, 2021, 44, 88-114.	1.3	57
50	Evaluation of size-exclusion chromatography and size-exclusion electrochromatography calibration curves. Journal of Chromatography A, 2002, 957, 127-137.	1.8	56
51	Comprehensive Two-Dimensional Ultrahigh-Pressure Liquid Chromatography for Separations of Polymers. Analytical Chemistry, 2012, 84, 7802-7809.	3.2	56
52	Rhodium-Mediated Stereospecific Carbene Polymerization: From Homopolymers to Random and Block Copolymers. Macromolecules, 2010, 43, 8892-8903.	2.2	54
53	Branched-polymer separations using comprehensive two-dimensional molecular-topology fractionationA—size-exclusion chromatography. Journal of Chromatography A, 2008, 1201, 208-214.	1.8	51
54	Comparison of the efficiency of microparticulate and monolithic capillary columns. Journal of Separation Science, 2004, 27, 1431-1440.	1.3	49

#	Article	IF	CITATIONS
55	Thermodynamic model for supercritical fluid chromatography. Journal of Chromatography A, 1984, 315, 1-18.	1.8	48
56	Nanoparticle Analysis by Online Comprehensive Two-Dimensional Liquid Chromatography combining Hydrodynamic Chromatography and Size-Exclusion Chromatography with Intermediate Sample Transformation. Analytical Chemistry, 2017, 89, 9167-9174.	3.2	48
57	Monitoring the in Vitro Enzyme-Mediated Degradation of Degradable Poly(ester amide) for Controlled Drug Delivery by LC-ToF-MS. Biomacromolecules, 2011, 12, 3243-3251.	2.6	46
58	Correction of the resolution function for non-ideal peaks. Journal of Chromatography A, 1988, 458, 355-370.	1.8	44
59	Optimizing the peak capacity per unit time in one-dimensional and off-line two-dimensional liquid chromatography for the separation of complex peptide samples. Journal of Chromatography A, 2009, 1216, 7368-7374.	1.8	44
60	Towards ultra-high peak capacities and peak-production rates using spatial three-dimensional liquid chromatography. Lab on A Chip, 2015, 15, 4415-4422.	3.1	44
61	Fast size-exclusion chromatography—Theoretical and practical considerations. Journal of Chromatography A, 2005, 1099, 92-102.	1.8	42
62	Preparation of monolithic columns with target mesopore-size distribution for potential use in size-exclusion chromatography. Journal of Chromatography A, 2007, 1150, 279-289.	1.8	42
63	Recent applications of chemometrics in one―and twoâ€dimensional chromatography. Journal of Separation Science, 2020, 43, 1678-1727.	1.3	42
64	Separation and characterization of functional poly(n-butyl acrylate) by critical liquid chromatography. Journal of Chromatography A, 2004, 1055, 123-133.	1.8	41
65	Calculation of pressure, density and temperature profiles in packed-column supercritical fluid chromatography. Journal of Chromatography A, 1987, 395, 91-110.	1.8	40
66	Distinguishing drug isomers in the forensic laboratory: GC–VUV in addition to GC–MS for orthogonal selectivity and the use of library match scores as a new source of information. Forensic Science International, 2019, 302, 109900.	1.3	40
67	Comparison of stationary phases for packed-column supercritical fluid chromatography. Journal of Chromatography A, 1990, 506, 563-578.	1.8	39
68	Stochastic Theory of Size Exclusion Chromatography:Â Peak Shape Analysis on Single Columns. Analytical Chemistry, 2005, 77, 3138-3148.	3.2	39
69	Selection of comparison criteria and experimental conditions to evaluate the kinetic performance of monolithic and packed-bed columns. Journal of Chromatography A, 2006, 1130, 108-114.	1.8	39
70	Characterization of Dye Extracts from Historical Cultural-Heritage Objects Using State-of-the-Art Comprehensive Two-Dimensional Liquid Chromatography and Mass Spectrometry with Active Modulation and Optimized Shifting Gradients. Analytical Chemistry, 2019, 91, 3062-3069.	3.2	38
71	Pillar-structured microchannels for on-chip liquid chromatography: Evaluation of the permeability and separation performance. Journal of Separation Science, 2007, 30, 1453-1460.	1.3	37
72	Determination of the amylose–amylopectin ratio of starches by iodine-affinity capillary electrophoresis. Journal of Chromatography A, 2004, 1053, 227-234.	1.8	36

#	Article	IF	CITATIONS
73	Classification of highly similar crude oils using data sets from comprehensive two-dimensional gas chromatography and multivariate techniques. Journal of Chromatography A, 2005, 1096, 156-164.	1.8	36
74	Practical aspects of using methacrylate-ester-based monolithic columns in capillary electrochromatography. Journal of Chromatography A, 2006, 1109, 74-79.	1.8	36
75	Applicability of retention modelling in hydrophilic-interaction liquid chromatography for algorithmic optimization programs with gradient-scanning techniques. Journal of Chromatography A, 2017, 1530, 104-111.	1.8	36
76	Novel system for classifying chromatographic applications, exemplified by comprehensive two-dimensional gas chromatography and multivariate analysis. Journal of Chromatography A, 2005, 1071, 229-237.	1.8	35
77	Characterization of complex polyether polyols using comprehensive two-dimensional liquid chromatography hyphenated to high-resolution mass spectrometry. Journal of Chromatography A, 2018, 1569, 128-138.	1.8	35
78	Latest Trends on the Future of Three-Dimensional Separations in Chromatography. Chemical Reviews, 2021, 121, 12016-12034.	23.0	35
79	Effect of pressure on retention in supercritical-fluid chromatography with packed columns. Journal of Chromatography A, 1986, 352, 315-328.	1.8	34
80	Robust isocratic liquid chromatographic separation of functional poly(methyl methacrylate). Journal of Chromatography A, 2003, 1018, 19-27.	1.8	34
81	Application of the reversed-phase liquid chromatographic model to describe the retention behaviour of polydisperse macromolecules in gradient and isocratic liquid chromatography. Journal of Chromatography A, 2003, 988, 53-67.	1.8	34
82	Z-RAFT star polymerization of styrene: Comprehensive characterization using size-exclusion chromatography. Polymer, 2008, 49, 5199-5208.	1.8	34
83	Gradient-elution parameters in capillary liquid chromatography for high-speed separations of peptides and intact proteins. Journal of Chromatography A, 2014, 1355, 149-157.	1.8	34
84	Development of a resolution metric for comprehensive two-dimensional chromatography. Journal of Chromatography A, 2007, 1146, 232-241.	1.8	33
85	Isotopic and elemental profiling of ammonium nitrate in forensic explosives investigations. Forensic Science International, 2015, 248, 101-112.	1.3	33
86	Fractionation of human serum lipoproteins and simultaneous enzymatic determination of cholesterol and triglycerides. Analytica Chimica Acta, 2009, 654, 85-91.	2.6	32
87	Analytical methodology for sulfonated lignins. Journal of Separation Science, 2010, 33, 439-452.	1.3	32
88	Hydrodynamic chromatography of macromolecules using polymer monolithic columns. Journal of Chromatography A, 2011, 1218, 8638-8645.	1.8	31
89	Design of a microfluidic device for comprehensive spatial twoâ€dimensional liquid chromatography. Journal of Separation Science, 2015, 38, 1123-1129.	1.3	31
90	Characterization of synthetic dyes by comprehensive two-dimensional liquid chromatography combining ion-exchange chromatography and fast ion-pair reversed-phase chromatography. Journal of Chromatography A, 2016, 1436, 141-146.	1.8	31

#	Article	IF	CITATIONS
91	Enhancing detectability of anabolic-steroid residues in bovine urine by actively modulated online comprehensive two-dimensional liquid chromatography – high-resolution mass spectrometry. Analytica Chimica Acta, 2018, 1013, 87-97.	2.6	31
92	Comprehensive two-dimensional liquid chromatography: Ion chromatography×reversed-phase liquid chromatography for separation of low-molar-mass organic acids. Journal of Chromatography A, 2010, 1217, 6742-6746.	1.8	30
93	Supercritical-fluid chromatography — prospects and problems. TrAC - Trends in Analytical Chemistry, 1987, 6, 10-17.	5.8	29
94	Characterization of polyethylene glycols and polypropylene glycols by capillary zone electrophoresis and micellar electrokinetic chromatography. Journal of Chromatography A, 2003, 985, 479-491.	1.8	29
95	Determination of major carotenoids in vegetables by capillary electrochromatography. Journal of Separation Science, 2006, 29, 660-665.	1.3	29
96	Mapping degradation pathways of natural and synthetic dyes with LC-MS: Influence of solvent on degradation mechanisms. Journal of Cultural Heritage, 2019, 38, 29-36.	1.5	29
97	Development of comprehensive two-dimensional low-flow liquid-chromatography setup coupled to high-resolution mass spectrometry for shotgun proteomics. Analytica Chimica Acta, 2021, 1156, 338349.	2.6	29
98	Comprehensive 2â€D chromatography of random and block methacrylate copolymers. Journal of Separation Science, 2010, 33, 1414-1420.	1.3	28
99	Selection of Column Dimensions and Gradient Conditions to Maximize the Peak-Production Rate in Comprehensive Off-Line Two-Dimensional Liquid Chromatography Using Monolithic Columns. Analytical Chemistry, 2010, 82, 7015-7020.	3.2	28
100	RES, an expert system for the set-up and interpretation of a ruggedness test in HPLC method validation. Chemometrics and Intelligent Laboratory Systems, 1991, 11, 37-55.	1.8	27
101	Gradien elution methods for predicting isocratic conditions. Journal of Chromatography A, 1991, 550, 425-447.	1.8	27
102	Criteria for developing rugged high-performance liquid chromatographic methods. Journal of Chromatography A, 1995, 697, 3-16.	1.8	27
103	Predicting the behaviour of polydisperse polymers in liquid chromatography under isocratic and gradient conditions. Journal of Chromatography A, 2002, 965, 93-107.	1.8	27
104	Fourier transform infrared spectroscopy with a sample deposition interface as a quantitative detector in size-exclusion chromatography. Journal of Chromatography A, 2002, 948, 257-265.	1.8	27
105	Switching solvent and enhancing analyte concentrations in small effluent fractions using in-column focusing. Journal of Chromatography A, 2016, 1427, 90-95.	1.8	27
106	Effect of model inaccuracy on selectivity optimization procedures in reversed-phase liquid chromatography. Journal of Chromatography A, 1987, 384, 117-133.	1.8	26
107	Criteria for optimizing the separation of target analytes in complex chromatograms. Chemometrics and Intelligent Laboratory Systems, 1996, 35, 67-86.	1.8	26
108	Experimental investigation of the band broadening originating from the top and bottom walls in micromachined nonporous pillar array columns. Journal of Separation Science, 2007, 30, 2605-2613.	1.3	26

#	Article	IF	CITATIONS
109	Study on the performance of different types of three-dimensional chromatographic systems. Journal of Chromatography A, 2013, 1271, 137-143.	1.8	26
110	Study of the influence of the aspect ratio on efficiency, flow resistance and retention factors of packed capillary columns in pressure- and electrically-driven liquid chromatography. Journal of Chromatography A, 2004, 1044, 311-316.	1.8	25
111	Determination of the degree of substitution and its distribution of carboxymethylcelluloses by capillary zone electrophoresis. Carbohydrate Research, 2004, 339, 1917-1924.	1.1	25
112	Poppe plots for size-exclusion chromatography. Journal of Chromatography A, 2005, 1073, 87-91.	1.8	25
113	Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography. Journal of Chromatography A, 2014, 1359, 162-169.	1.8	25
114	Fabrication of columns for open-tubular liquid chromatography using photopolymerization of acrylates. Journal of Chromatography A, 1990, 516, 301-312.	1.8	23
115	Deformation and degradation of polymers in ultra-high-pressure liquid chromatography. Journal of Chromatography A, 2011, 1218, 6930-6942.	1.8	23
116	Comprehensive two-dimensional liquid chromatography of heavy oil. Journal of Chromatography A, 2018, 1564, 110-119.	1.8	23
117	Immobilized-enzyme reactors integrated into analytical platforms: Recent advances and challenges. TrAC - Trends in Analytical Chemistry, 2021, 144, 116419.	5.8	23
118	Practical implementation of neural networks for the interpretation of infrared spectra. Vibrational Spectroscopy, 1993, 4, 263-272.	1.2	22
119	A cyclic-olefin-copolymer microfluidic immobilized-enzyme reactor for rapid digestion of proteins from dried blood spots. Journal of Chromatography A, 2017, 1491, 36-42.	1.8	22
120	Measuring and using scanning-gradient data for use in method optimization for liquid chromatography. Journal of Chromatography A, 2021, 1636, 461780.	1.8	22
121	Field-flow fractionation for molecular-interaction studies of labile and complex systems: A critical review. Analytica Chimica Acta, 2022, 1193, 339396.	2.6	22
122	Contribution of the polymer standards' polydispersity to the observed band broadening in size-exclusion chromatography. Journal of Chromatography A, 2003, 986, 1-15.	1.8	21
123	Characterization of hydroxypropylmethylcellulose (HPMC) using comprehensive two-dimensional liquid chromatography. Journal of Chromatography A, 2011, 1218, 5787-5793.	1.8	21
124	Size-exclusion chromatography using core-shell particles. Journal of Chromatography A, 2017, 1486, 96-102.	1.8	21
125	Effect of sample size of retention in packed column super-critical fluid chromatography. Journal of Chromatography A, 1988, 459, 201-213.	1.8	20
126	Optimisation of the chlorthalidone chiral separation by capillary electrochromatography using an achiral stationary phase and cyclodextrin in the mobile phase. Analytica Chimica Acta, 2004, 509, 11-19.	2.6	20

Peter J Schoenmakers

#	Article	IF	CITATIONS
127	Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: Structure elucidation, separation and quantification of degradation products. Journal of Chromatography A, 2011, 1218, 449-458.	1.8	20
128	Design and evaluation of microfluidic devices for two-dimensional spatial separations. Journal of Chromatography A, 2016, 1434, 127-135.	1.8	20
129	On-line microfluidic immobilized-enzyme reactors: A new tool for characterizing synthetic polymers. Analytica Chimica Acta, 2019, 1053, 62-69.	2.6	20
130	Effects of modifiers in packed and open-tubular supercritical fluid chromatography. Journal of Chromatography A, 1991, 552, 527-537.	1.8	19
131	One-dimensional and two-dimensional liquid chromatography of sulphonated lignins. Journal of Chromatography A, 2008, 1201, 196-201.	1.8	19
132	Accurate modelling of the retention behaviour of peptides in gradient-elution hydrophilic interaction liquid chromatography. Journal of Chromatography A, 2020, 1614, 460650.	1.8	19
133	Spotting isomer mixtures in forensic illicit drug casework with GC–VUV using automated coelution detection and spectral deconvolution. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1173, 122675.	1.2	19
134	Explanations and advice provided by an expert system for system optimization in high-performance liquid chromatography. Journal of Chromatography A, 1989, 485, 219-236.	1.8	18
135	Chemical variance, a useful tool for the interpretation and analysis of two-dimensional chromatograms. Journal of Chromatography A, 2006, 1120, 273-281.	1.8	18
136	Mucin-based stationary phases as tool for the characterization of drug–mucus interaction. Journal of Chromatography A, 2014, 1351, 70-81.	1.8	18
137	Peak-Tracking Algorithm for Use in Automated Interpretive Method-Development Tools in Liquid Chromatography. Analytical Chemistry, 2018, 90, 14011-14019.	3.2	18
138	Two-dimensional insertable separation tool (TWIST) for flow confinement in spatial separations. Journal of Chromatography A, 2018, 1577, 120-123.	1.8	18
139	Development of a rational optimisation procedure for the automated sample clean-up with column switching in pesticide residue analysis. Journal of Chromatography A, 1991, 552, 113-135.	1.8	17
140	Analysis of low-molar-mass materials in commercial rubber samples by Soxhlet and headspace extractions followed by GC–MS analysis. Journal of Pharmaceutical and Biomedical Analysis, 2004, 35, 1059-1073.	1.4	17
141	Methacrylate monolithic capillary columns for gradient peptide separations. Journal of Chromatography A, 2008, 1208, 109-115.	1.8	17
142	Perspectives on the future of multi-dimensional platforms. Faraday Discussions, 2019, 218, 72-100.	1.6	17
143	Application of supercritical fluid chromatography to the analysis of liquid-crystal mixtures. Journal of Chromatography A, 1986, 371, 121-134.	1.8	16
144	Optimization of chromatographic methods by a combination of optimization software and expert systems. Journal of Chromatography A, 1990, 506, 169-184.	1.8	16

PETER J SCHOENMAKERS

#	Article	IF	CITATIONS
145	Contactless conductivity detection of synthetic polymers in non-aqueous size-exclusion electrokinetic chromatography. Journal of Chromatography A, 2005, 1068, 183-187.	1.8	16
146	Molar mass distributions by gradient liquid chromatography: predicting and tailoring selectivity. Journal of Chromatography A, 2005, 1065, 219-229.	1.8	16
147	Topographic structures and chromatographic supports in microfluidic separation devices. Journal of Chromatography A, 2008, 1184, 560-572.	1.8	15
148	Low-molecular-weight model study of peroxide cross-linking of ethylene–propylene–diene rubber using gas chromatography and mass spectrometry. Journal of Chromatography A, 2008, 1201, 151-160.	1.8	15
149	Construction and initial evaluation of an apparatus for spatial comprehensive two-dimensional liquid-phase separations. Analytica Chimica Acta, 2011, 701, 92-97.	2.6	15
150	Pareto-optimality study into the comparison of the separation potential of comprehensive two-dimensional liquid chromatography in the column and spatial modes. Journal of Chromatography A, 2012, 1235, 39-48.	1.8	15
151	Pentaerythritol tetranitrate (PETN) profiling in post-explosion residues to constitute evidence of crime-scene presence. Forensic Science International, 2013, 230, 37-45.	1.3	15
152	Impurity profiling of trinitrotoluene using vacuum-outlet gas chromatography–mass spectrometry. Journal of Chromatography A, 2014, 1374, 224-230.	1.8	15
153	Fabrication of polymer monoliths within the confines of non-transparent 3D-printed polymer housings. Journal of Chromatography A, 2020, 1623, 461159.	1.8	15
154	Development of an on-line coupling of liquid–liquid extraction, normal-phase liquid chromatography and high-resolution gas chromatography producing an analytical marker for the prediction of mutagenicity and carcinogenicity of bitumen and bitumen fumes. Journal of Chromatography A, 1999, 849, 483-494.	1.8	14
155	Two-dimensional chromatography as a tool for studying band broadening in size-exclusion chromatography. Journal of Separation Science, 2005, 28, 1457-1466.	1.3	14
156	Characterization of Zâ€RAFT Star Polymerization of Butyl acrylate by Sizeâ€Exclusion Chromatography. Macromolecular Symposia, 2009, 275–276, 184-196.	0.4	14
157	Alternative sample-introduction technique to avoid breakthrough in gradient-elution liquid chromatography of polymers. Journal of Chromatography A, 2010, 1217, 6595-6598.	1.8	14
158	Optimization and evaluation of radially interconnected versus bifurcating flow distributors using computational fluid dynamics modelling. Journal of Chromatography A, 2015, 1380, 88-95.	1.8	14
159	Analysis of charged acrylic particles by on-line comprehensive two-dimensional liquid chromatography and automated data-processing. Analytica Chimica Acta, 2019, 1054, 184-192.	2.6	14
160	Confinement of Monolithic Stationary Phases in Targeted Regions of 3D-Printed Titanium Devices Using Thermal Polymerization. Analytical Chemistry, 2020, 92, 2589-2596.	3.2	14
161	Reducing the influence of geometry-induced gradient deformation in liquid chromatographic retention modelling. Journal of Chromatography A, 2021, 1635, 461714.	1.8	14
162	Microfluidic Pressure Driven Liquid Chromatography of Biologically Relevant Samples. Chromatographia, 2012, 75, 1225-1234.	0.7	13

#	Article	IF	CITATIONS
163	Feasibility study for the construction of an integrated expert system in high-performance liquid chromatography. Journal of Chromatography A, 1992, 589, 31-43.	1.8	12
164	Strip-based regression: A method to obtain comprehensive co-polymer architectures from matrix-assisted laser desorption ionisation-mass spectrometry data. Journal of Chromatography A, 2010, 1217, 4150-4159.	1.8	12
165	Determination of cholesterol and triglycerides in serum lipoproteins using flow field-flow fractionation coupled to gas chromatography–mass spectrometry. Analytica Chimica Acta, 2011, 706, 361-366.	2.6	12
166	Freeze-thaw valves as a flow control mechanism in spatially complex 3D-printed fluidic devices. Chemical Engineering Science, 2019, 207, 1040-1048.	1.9	12
167	Experimental and numerical study of band-broadening effects associated with analyte transfer in microfluidic devices for spatial two-dimensional liquid chromatography created by additive manufacturing. Journal of Chromatography A, 2019, 1598, 77-84.	1.8	12
168	Emerging techniques for the detection of pyrotechnic residues from seized postal packages containing fireworks. Forensic Science International, 2020, 308, 110160.	1.3	12
169	Low-molecular-weight model study of peroxide cross-linking of ethylene-propylene (-diene) rubber using gas chromatography and mass spectrometry. Journal of Chromatography A, 2008, 1201, 141-150.	1.8	11
170	Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study. Analytical and Bioanalytical Chemistry, 2015, 407, 8035-8045.	1.9	11
171	Integrating expert systems for high-performance liquid chromatographic method development. Chemometrics and Intelligent Laboratory Systems, 1991, 11, 27-35.	1.8	10
172	Characterisation of fluorinated copolymers using liquid chromatography coupled on-line to mass spectrometry, with automated data interpretation. Journal of Chromatography A, 2004, 1043, 239-248.	1.8	10
173	Towards unsupervised analysis of second-order chromatographic data: Automated selection of number of components in multivariate curve-resolution methods. Journal of Chromatography A, 2007, 1158, 258-272.	1.8	10
174	Characterization of aggregates of surface modified fullerenes by asymmetrical flow field-flow fractionation with multi-angle light scattering detection. Journal of Chromatography A, 2015, 1408, 197-206.	1.8	10
175	Multicomponent characterization and differentiation of flash bangers — Part II: Elemental profiling of plastic caps. Forensic Science International, 2018, 290, 336-348.	1.3	10
176	Peak-tracking algorithm for use in comprehensive two-dimensional liquid chromatography – Application to monoclonal-antibody peptides. Journal of Chromatography A, 2021, 1639, 461922.	1.8	10
177	Mobile and stationary phases for SFC: Effects of using modifiers. Mikrochimica Acta, 1991, 104, 337-351.	2.5	9
178	Chromatography in Industry. Annual Review of Analytical Chemistry, 2009, 2, 333-357.	2.8	9
179	Transfer-volume effects in two-dimensional chromatography: Adsorption-phenomena in second-dimension size-exclusion chromatography. Journal of Chromatography A, 2011, 1218, 1147-1152.	1.8	9
180	Chromatographic examination of the chemical composition and sequence distribution of copolymers from ethyl and benzyl diazoacetate. Journal of Chromatography A, 2012, 1255, 259-266.	1.8	9

#	Article	lF	CITATIONS
181	Decreasing the uncertainty of peak assignments for the analysis of synthetic cathinones using multi-dimensional ultra-high performance liquid chromatography. Analytical Methods, 2018, 10, 3178-3187.	1.3	9
182	Thermal modulation to enhance two-dimensional liquid chromatography separations of polymers. Journal of Chromatography A, 2021, 1653, 462429.	1.8	9
183	Influence of pore size on the separation of random and block copolymers by interactive liquid chromatography. Journal of Chromatography A, 2006, 1130, 54-63.	1.8	8
184	Pyrolysis–gas chromatography–mass spectrometry for studying N-vinyl-2-pyrrolidone-co-vinyl acetate copolymers and their dissolution behaviour. Analytica Chimica Acta, 2011, 706, 305-311.	2.6	8
185	Accurate quantitation of pentaerythritol tetranitrate and its degradation products using liquid chromatography–atmospheric pressure chemical ionization–mass spectrometry. Journal of Chromatography A, 2014, 1338, 111-116.	1.8	8
186	Temperature control in large-internal-diameter scaffolded monolithic columns operated at ultra-high pressures. Journal of Chromatography A, 2015, 1401, 60-68.	1.8	8
187	Optimizing design and employing permeability differences to achieve flow confinement in devices for spatial multidimensional liquid chromatography. Journal of Chromatography A, 2020, 1612, 460665.	1.8	8
188	Characterization of glycerin-based polyols by capillary electrophoresis. Journal of Chromatography A, 2004, 1046, 263-269.	1.8	8
189	Comparing different light-degradation approaches for the degradation of crystal violet and eosin Y. Dyes and Pigments, 2022, 197, 109882.	2.0	8
190	Co-Polymer sequence determination over the molar mass distribution by size-exclusion chromatography combined with pyrolysis - gas chromatography. Journal of Chromatography A, 2022, 1670, 462973.	1.8	8
191	Expert system for repeatability testing of high-performance liquid chromatographic methods. Journal of Chromatography A, 1991, 550, 257-266.	1.8	7
192	Expert systems for method development and validation in HPLC. Mikrochimica Acta, 1991, 104, 493-503.	2.5	7
193	Hydrolytic degradation of poly(d,l-lactide-co-glycolide 50/50)-di-acrylate network as studied by liquid chromatography–mass spectrometry. Polymer Degradation and Stability, 2011, 96, 1589-1601.	2.7	7
194	Molar mass, chemical-composition, and functionality-type distributions of poly(2-oxazoline)s revealed by a variety of separation techniques. Journal of Chromatography A, 2012, 1265, 123-132.	1.8	7
195	Visualization procedures for proteins and peptides on flat-bed monoliths and their effects on matrix-assisted laser-desorption/ionization time-of-flight mass spectrometric detection. Journal of Chromatography A, 2013, 1286, 222-228.	1.8	7
196	Charge-based separation of synthetic macromolecules by non-aqueous ion exchange chromatography. Journal of Chromatography A, 2020, 1626, 461351.	1.8	7
197	Critical comparison of background correction algorithms used in chromatography. Analytica Chimica Acta, 2022, 1201, 339605.	2.6	7
198	An FTIR Study on the Solid‣tate Copolymerization of bis(2â€hydroxyethyl)terephthalate and Poly(butylene terephthalate) and the Resulting Copolymers. Macromolecular Symposia, 2008, 265, 290-296.	0.4	6

PETER J SCHOENMAKERS

#	Article	IF	CITATIONS
199	Effect of initial estimates and constraints selection in multivariate curve resolution—Alternating least squares. Application to low-resolution NMR data. Analytica Chimica Acta, 2009, 641, 37-45.	2.6	6
200	Detailed study of polystyrene solubility using pyrolysis–gas chromatography–mass spectrometry and combination with size-exclusion chromatography. Analytical and Bioanalytical Chemistry, 2014, 406, 459-465.	1.9	6
201	Multicomponent characterization and differentiation of flash bangers — Part I: Sample collection and visual examination. Forensic Science International, 2018, 290, 327-335.	1.3	6
202	Heterogeneity analysis of polymeric carboxylic acid functionality by selective derivatization followed by size exclusion chromatography. Analytica Chimica Acta, 2019, 1072, 87-94.	2.6	6
203	Multichannel separation device with parallel electrochemical detection. Journal of Chromatography A, 2020, 1610, 460537.	1.8	6
204	Living with Breakthrough: Two-Dimensional Liquid-Chromatography Separations of a Water-Soluble Synthetically Grafted Bio-Polymer. Separations, 2020, 7, 41.	1.1	6
205	Asymmetrical flow field-flow fractionation to probe the dynamic association equilibria of β-D-galactosidase. Journal of Chromatography A, 2021, 1635, 461719.	1.8	6
206	Accurate prediction of the retention behaviour of polydisperse macromolecules based on a minimum number of experiments. Journal of Chromatography A, 2004, 1041, 43-51.	1.8	5
207	Hydrophobic polymer monoliths as novel phase separators: Application in continuous liquid–liquid extraction systems. Analytica Chimica Acta, 2012, 720, 63-70.	2.6	5
208	A versatile system for studying the enzymatic degradation of multi-block poly(ester amide)s. Journal of Chromatography A, 2013, 1286, 29-40.	1.8	5
209	Acid monomer analysis in waterborne polymer systems by targeted labeling of carboxylic acid functionality, followed by pyrolysis – gas chromatography. Journal of Chromatography A, 2018, 1560, 63-70.	1.8	5
210	Charge-Based Separation of Acid-Functional Polymers by Non-aqueous Capillary Electrophoresis Employing Deprotonation and Heteroconjugation Approaches. Analytical Chemistry, 2021, 93, 5924-5930.	3.2	5
211	Poly(acrylamide-co-N,N′-methylenebisacrylamide) Monoliths for High-Peak-Capacity Hydrophilic-Interaction Chromatography–High-Resolution Mass Spectrometry of Intact Proteins at Low Trifluoroacetic Acid Content. Analytical Chemistry, 2021, 93, 16000-16007.	3.2	5
212	Methacrylate monolithic stationary phases for gradient elution separations in microfluidic devices. Journal of Chromatography A, 2011, 1218, 5292-5297.	1.8	4
213	Fast determination of functionality-type × molecular-weight distribution of propoxylates with varying numbers of hydroxyl end-groups using gradient–normal-phase liquid chromatographyâ€ĨA—â€ultra-high pressure size-exclusion chromatography. Journal of Chromatography A, 2021, 1659, 462644.	1.8	4
214	Improving retention-time prediction in supercritical-fluid chromatography by multivariate modelling. Journal of Chromatography A, 2022, 1668, 462909.	1.8	4
215	Branched polymers characterized by comprehensive two-dimensional separations with fully orthogonal mechanisms: Molecular-topology fractionation×size-exclusion chromatography. Journal of Chromatography A, 2014, 1366, 54-64.	1.8	3
216	Fabrication of monolithic frits and columns for chipâ€based multidimensional separation devices. Journal of Separation Science, 2022, , .	1.3	3

#	Article	IF	CITATIONS
217	2: Knowledge-based Systems in Chemical Analysis. Data Handling in Science and Technology, 1993, 13, 13-77.	3.1	2
218	Chemical Analysis for Polymer Engineers. , 0, , 1015-1046.		2
219	Evaluation of comprehensive onâ€line liquid chromatography thermally assisted hydrolysis and methylation–gas chromatography–mass spectrometry for characterization of sulfonated lignins. Journal of Separation Science, 2010, 33, 3604-3611.	1.3	2
220	Rapid forensic chemical classification of confiscated flash banger fireworks using capillary electrophoresis. Forensic Chemistry, 2019, 16, 100187.	1.7	2
221	Chapter 8 Supercritical-fluid chromatography. Journal of Chromatography Library, 1992, 51, A339-A391.	0.1	1
222	Analysis of Polymer Molecules: Reaction Monitoring and Control. , 0, , 160-185.		1
223	Editorial on "Molecular dynamic theories in chromatography―by A. Felinger. Journal of Chromatography A, 2008, 1184, 19.	1.8	1
224	Mass spectrometry: Innovation and application. Part VI. Journal of Chromatography A, 2010, 1217, 3907.	1.8	1
225	Mass spectrometry: Innovation and application. Part VII. Journal of Chromatography A, 2012, 1259, 1-2.	1.8	1
226	Analysis of Polymer Molecules including Reaction Monitoring and Control. , 2013, , 187-212.		1
227	Reply to "Comments to the early history of gas chromatographic methods for oil analysis―by L.S. Ettre. Journal of Chromatography A, 2003, 993, 221.	1.8	Ο
228	Aqueous size-exclusion chromatography of cationic polymers for gene delivery. Journal of Controlled Release, 2006, 116, e69-e71.	4.8	0
229	Foreword. Journal of Chromatography A, 2008, 1201, 133.	1.8	Ο
230	â€~Perfect synergy' shines again. TrAC - Trends in Analytical Chemistry, 2008, 27, 271-273.	5.8	0
231	Editorial on "Critical overview of selected contemporary sample preparation techniques―by L. Ramos. Journal of Chromatography A, 2012, 1221, 83.	1.8	Ο
232	Separation and characterization of natural and synthetic macromolecules. Analytical and Bioanalytical Chemistry, 2013, 405, 8957-8958.	1.9	0
233	Professor Marja-Liisa Riekkola's 60th birthday. Journal of Chromatography A, 2013, 1317, 1-2.	1.8	Ο
234	Editorial on "Polymer separations by liquid interaction chromatography: Principles – prospects – limitations―by Wolfgang Radke. Journal of Chromatography A, 2014, 1335, 61.	1.8	0

#	Article	IF	CITATIONS
235	Editorial to "Recent advances and trends in the liquid-chromatography-mass spectrometry analysis of flavonoids―by André de Villiers, Pieter Venter and Harald Pasch. Journal of Chromatography A, 2016, 1430, 15.	1.8	ο
236	A compound post-column re-focusing approach in supercritical fluid chromatography. Journal of Chromatography A, 2021, 1660, 462642.	1.8	0
237	Introduction of Octadecyl-Bonded Porous Particles in 3D-Printed Transparent Housings with Multiple Outlets. Chromatographia, 0, , .	0.7	О