Ian Hickson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6782216/publications.pdf Version: 2024-02-01

IAN HICKSON

#	Article	IF	CITATIONS
1	Modulating Androgen Receptor-Driven Transcription in Prostate Cancer with Selective CDK9 Inhibitors. Cell Chemical Biology, 2021, 28, 134-147.e14.	2.5	44
2	Discovery of JNJ-63576253, a Next-Generation Androgen Receptor Antagonist Active Against Wild-Type and Clinically Relevant Ligand Binding Domain Mutations in Metastatic Castration-Resistant Prostate Cancer. Molecular Cancer Therapeutics, 2021, 20, 763-774.	1.9	2
3	FEN1 Blockade for Platinum Chemo-Sensitization and Synthetic Lethality in Epithelial Ovarian Cancers. Cancers, 2021, 13, 1866.	1.7	12
4	Spirocyclic Thiohydantoin Antagonists of F877L and Wild-Type Androgen Receptor for Castration-Resistant Prostate Cancer. ACS Medicinal Chemistry Letters, 2021, 12, 1245-1252.	1.3	3
5	Discovery of JNJ-63576253: A Clinical Stage Androgen Receptor Antagonist for F877L Mutant and Wild-Type Castration-Resistant Prostate Cancer (mCRPC). Journal of Medicinal Chemistry, 2021, 64, 909-924.	2.9	16
6	USP45 and Spindly are part of the same complex implicated in cell migration. Scientific Reports, 2018, 8, 14375.	1.6	7
7	Targeting ATM for Cancer Therapy: Prospects for Drugging ATM. Cancer Drug Discovery and Development, 2018, , 185-208.	0.2	1
8	The fluorescent two-hybrid assay for live-cell profiling of androgen receptor modulators. Journal of Steroid Biochemistry and Molecular Biology, 2017, 166, 45-53.	1.2	7
9	<scp>USP</scp> 45 deubiquitylase controls <scp>ERCC</scp> 1– <scp>XPF</scp> endonucleaseâ€mediated <scp>DNA</scp> damage responses. EMBO Journal, 2015, 34, 326-343.	3.5	48
10	Initial testing (stage 1) of the histone deacetylase inhibitor, quisinostat (JNJ-26481585), by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2014, 61, 245-252.	0.8	37
11	The Fluorescent Two-Hybrid Assay to Screen for Protein–Protein Interaction Inhibitors in Live Cells. Journal of Biomolecular Screening, 2014, 19, 516-525.	2.6	35
12	Discovery of 4-{4-[(3 <i>R</i>)-3-Methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1 <i>H</i> -indole (AZ20): A Potent and Selective Inhibitor of ATR Protein Kinase with Monotherapy in Vivo Antitumor Activity. Journal of Medicinal Chemistry, 2013, 56, 2125-2138.	2.9	190
13	AZD8055 Is a Potent, Selective, and Orally Bioavailable ATP-Competitive Mammalian Target of Rapamycin Kinase Inhibitor with <i>In vitro</i> and <i>In vivo</i> Antitumor Activity. Cancer Research, 2010, 70, 288-298.	0.4	717
14	JNJ-26481585, a Novel Second-Generation Oral Histone Deacetylase Inhibitor, Shows Broad-Spectrum Preclinical Antitumoral Activity. Clinical Cancer Research, 2009, 15, 6841-6851.	3.2	190
15	The discovery and optimisation of pyrido[2,3-d]pyrimidine-2,4-diamines as potent and selective inhibitors of mTOR kinase. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5950-5953.	1.0	79
16	Identification and optimisation of novel and selective small molecular weight kinase inhibitors of mTOR. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5898-5901.	1.0	58
17	Pyranone, Thiopyranone, and Pyridone Inhibitors of Phosphatidylinositol 3-Kinase Related Kinases. Structureâ^'Activity Relationships for DNA-Dependent Protein Kinase Inhibition, and Identification of the First Potent and Selective Inhibitor of the Ataxia Telangiectasia Mutated Kinase. Journal of Medicinal Chemistry. 2007. 50, 1958-1972.	2.9	79
18	Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005, 434, 917-921.	13.7	5,595

Ian Hickson

#	Article	IF	CITATIONS
19	Identification and Characterization of a Novel and Specific Inhibitor of the Ataxia-Telangiectasia Mutated Kinase ATM. Cancer Research, 2004, 64, 9152-9159.	0.4	1,089
20	Chemoprotective gene transfer I: transduction of human haemopoietic progenitors with O6-benzylguanine-resistant O6-alkylguanine-DNA alkyltransferase attenuates the toxic effects of O6-alkylating agents in vitro. Gene Therapy, 1998, 5, 835-841.	2.3	37
21	Chemoprotective gene transfer II: multilineage in vivo protection of haemopoiesis against the effects of an antitumour agent by expression of a mutant human O6-alkylguanine-DNA alkyltransferase. Gene Therapy, 1998, 5, 842-847.	2.3	44
22	The potential role of glycine-160 of human O6-alkylguanine-DNA alkyltransferase in reaction with O6-benzylguanine as determined by site-directed mutagenesis and molecular modelling comparisons. BBA - Proteins and Proteomics, 1997, 1342, 90-102.	2.1	6