Bruno Antonny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6782127/publications.pdf

Version: 2024-02-01

36303 38395 12,443 100 51 95 citations h-index g-index papers 117 117 117 11118 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DHA-containing phospholipids control membrane fusion and transcellular tunnel dynamics. Journal of Cell Science, 2022, 135, .	2.0	4
2	Tumor protein D54 binds intracellular nanovesicles via an extended amphipathic region. Journal of Biological Chemistry, 2022, 298, 102136.	3.4	5
3	Exceptional stability of a perilipin on lipid droplets depends on its polar residues, suggesting multimeric assembly. ELife, 2021, 10, .	6.0	21
4	A comprehensive library of fluorescent constructs of SARSâ€CoVâ€2 proteins and their initial characterisation in different cell types. Biology of the Cell, 2021, 113, 311-328.	2.0	17
5	Nanoscale architecture of a VAP-A-OSBP tethering complex at membrane contact sites. Nature Communications, 2021, 12, 3459.	12.8	29
6	Intrinsically disordered protein regions at membrane contact sites. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 159020.	2.4	6
7	The transbilayer distribution of polyunsaturated phospholipids determines their facilitating effect on membrane deformation. Soft Matter, 2020, 16, 1722-1730.	2.7	27
8	Molecular and cellular dissection of the oxysterol-binding protein cycle through a fluorescent inhibitor. Journal of Biological Chemistry, 2020, 295, 4277-4288.	3.4	24
9	An Intrinsically Disordered Region in OSBP Acts as an Entropic Barrier to Control Protein Dynamics and Orientation at Membrane Contact Sites. Developmental Cell, 2019, 49, 220-234.e8.	7.0	50
10	Specific Coating of Cellular Lipid Droplets by a Giant and Repetitive Amphipathic Helix. Biophysical Journal, 2018, 114, 276a.	0.5	0
11	A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets. Nature Communications, 2018, 9, 1332.	12.8	89
12	The Oxysterol-Binding Protein Cycle: Burning Off PI(4)P to Transport Cholesterol. Annual Review of Biochemistry, 2018, 87, 809-837.	11.1	115
13	CCTα Commands Phospholipid Homeostasis from the Nucleus. Developmental Cell, 2018, 45, 419-420.	7.0	4
14	Acyl chain asymmetry and polyunsaturation of brain phospholipids facilitate membrane vesiculation without leakage. ELife, 2018, 7, .	6.0	111
15	PackMem: A Versatile Tool to Compute and Visualize Interfacial Packing Defects in Lipid Bilayers. Biophysical Journal, 2018, 115, 436-444.	0.5	57
16	The Many Faces of Amphipathic Helices. Biomolecules, 2018, 8, 45.	4.0	135
17	Sterol transfer, <scp>PI</scp> 4P consumption, and control of membrane lipid order by endogenous <scp>OSBP</scp> . EMBO Journal, 2017, 36, 3156-3174.	7.8	180
18	Editorial overview: Cell organelles. Current Opinion in Cell Biology, 2017, 47, iv-vi.	5.4	0

#	Article	IF	CITATIONS
19	Membrane fission by dynamin: what we know and what we need to know. EMBO Journal, 2016, 35, 2270-2284.	7.8	388
20	Targeting surface voids to counter membrane disorders in lipointoxication-related diseases. Journal of Cell Science, 2016, 129, 2368-81.	2.0	5
21	Lipid unsaturation and organelle dynamics. Current Opinion in Cell Biology, 2016, 41, 25-32.	5.4	90
22	Homeoviscous Adaptation and the Regulation of Membrane Lipids. Journal of Molecular Biology, 2016, 428, 4776-4791.	4.2	301
23	The counterflow transport of sterols and PI4P. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 940-951.	2.4	55
24	A filter at the entrance of the Golgi that selects vesicles according to size and bulk lipid composition. ELife, 2016, 5, .	6.0	57
25	Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory. Journal of Membrane Biology, 2015, 248, 611-640.	2.1	157
26	From zero to six double bonds: phospholipid unsaturation and organelle function. Trends in Cell Biology, 2015, 25, 427-436.	7.9	168
27	A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Nature Communications, 2015, 6, 6671.	12.8	166
28	Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone. PLoS ONE, 2015, 10, e0137965.	2.5	40
29	Building lipid â€~PIPelines' throughout the cell by ORP/Osh proteins. Biochemical Society Transactions, 2014, 42, 1465-1470.	3.4	17
30	A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nature Communications, 2014, 5, 4916.	12.8	230
31	Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nature Cell Biology, 2014, 16, 415-424.	10.3	221
32	Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science, 2014, 345, 693-697.	12.6	291
33	Structural Basis of Lipid Exchange in the Oxysterol-Binding Protein Homologue (OSH) Family. Biophysical Journal, 2014, 106, 99a.	0.5	0
34	Interaction of the Spo20 Membrane-Sensor Motif with Phosphatidic Acid and Other Anionic Lipids, and Influence of the Membrane Environment. PLoS ONE, 2014, 9, e113484.	2.5	54
35	Molecular Dynamics Study of a Protein Motif that Senses Packing Defects Induced by Membrane Curvature. Biophysical Journal, 2013, 104, 662a.	0.5	1
36	Arf GTPase regulation through cascade mechanisms and positive feedback loops. FEBS Letters, 2013, 587, 2028-2035.	2.8	31

#	Article	IF	Citations
37	A Four-Step Cycle Driven by PI(4)P Hydrolysis Directs Sterol/PI(4)P Exchange by the ER-Golgi Tether OSBP. Cell, 2013, 155, 830-843.	28.9	623
38	Targeting Cellular Organelles by Amphipathic Helices: Taking Advantage of Membrane Biophysics. Biophysical Journal, 2013, 104, 372a-373a.	0.5	0
39	Directing Traffic into the Future. Developmental Cell, 2013, 27, 480-484.	7.0	2
40	The Lipidation Machinery Involved in Autophagosome Growth is Only Functional on Highly Curved Membranes. Biophysical Journal, 2013, 104, 97a.	0.5	0
41	Membrane bending: the power of protein imbalance. Trends in Biochemical Sciences, 2013, 38, 576-584.	7.5	46
42	Conical Lipids in Flat Bilayers Induce Packing Defects Similar to that Induced by Positive Curvature. Biophysical Journal, 2013, 104, 585-593.	0.5	149
43	Amphipathic Lipid Packing Sensor Motifs: Probing Bilayer Defects with Hydrophobic Residues. Biophysical Journal, 2013, 104, 575-584.	0.5	171
44	Insights into the mechanisms of sterol transport between organelles. Cellular and Molecular Life Sciences, 2013, 70, 3405-3421.	5.4	70
45	Vitamin Currency in a Lipid Exchange Market. Science, 2013, 340, 1051-1052.	12.6	7
46	A Novel Membrane Sensor Controls the Localization and ArfGEF Activity of Bacterial RalF. PLoS Pathogens, 2013, 9, e1003747.	4.7	33
47	COPI buds 60-nm lipid droplets from reconstituted water–phospholipid–triacylglyceride interfaces, suggesting a tension clamp function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13244-13249.	7.1	146
48	Arf1 and Membrane Curvature Cooperate to Recruit Arfaptin2 to Liposomes. PLoS ONE, 2013, 8, e62963.	2.5	15
49	HowLegionelladiverts host small GTPases: structural and biochemical studies. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s313-s313.	0.3	3
50	Curvature, Lipid Packing, and Electrostatics of Membrane Organelles: Defining Cellular Territories in Determining Specificity. Developmental Cell, 2012, 23, 886-895.	7.0	434
51	Mechanisms of Membrane Curvature Sensing. Annual Review of Biochemistry, 2011, 80, 101-123.	11.1	384
52	Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. Journal of Cell Biology, 2011, 195, 965-978.	5.2	343
53	α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. Journal of Cell Biology, 2011, 194, 89-103.	5.2	177
54	Kinetic Studies of the Arf Activator Arno on Model Membranes in the Presence of Arf Effectors Suggest Control by a Positive Feedback Loop. Journal of Biological Chemistry, 2011, 286, 3873-3883.	3.4	70

#	Article	IF	Citations
55	Amphipathic helices and membrane curvature. FEBS Letters, 2010, 584, 1840-1847.	2.8	482
56	ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions. EMBO Journal, 2010, 29, 292-303.	7.8	66
57	Discrete Determinants in ArfGAP2/3 Conferring Golgi Localization and Regulation by the COPI Coat. Molecular Biology of the Cell, 2009, 20, 859-869.	2.1	50
58	Detached membrane bending. Nature, 2009, 458, 159-160.	27.8	6
59	The apparent cooperativity of some GPCRs does not necessarily imply dimerization. Trends in Pharmacological Sciences, 2009, 30, 182-187.	8.7	103
60	Control of Membrane Remodeling at the Golgi Through Sensors of Membrane Curvature: The ALPS Motif. Biophysical Journal, 2009, 96, 2a.	0.5	0
61	COPI Coat Assembly Occurs on Liquid Disordered Domains and the Associated Membrane Deformations are Limited by Membrane Tension. Biophysical Journal, 2009, 96, 549a-550a.	0.5	1
62	The Long and Short of Membrane Fission. Cell, 2008, 135, 1163-1165.	28.9	23
63	Asymmetric Tethering of Flat and Curved Lipid Membranes by a Golgin. Science, 2008, 320, 670-673.	12.6	167
64	COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16946-16951.	7.1	92
65	HELIQUEST: a web server to screen sequences with specific \hat{l}_{\pm} -helical properties. Bioinformatics, 2008, 24, 2101-2102.	4.1	928
66	In Vitro Assays to Characterize Inhibitors of the Activation of Small G Proteins by Their Guanine Nucleotide Exchange Factors. Methods in Enzymology, 2008, 438, 41-56.	1.0	8
67	Two Lipid-Packing Sensor Motifs Contribute to the Sensitivity of ArfGAP1 to Membrane Curvature. Biochemistry, 2007, 46, 1779-1790.	2.5	114
68	A general amphipathic \hat{l}_{\pm} -helical motif for sensing membrane curvature. Nature Structural and Molecular Biology, 2007, 14, 138-146.	8.2	526
69	Membrane deformation by protein coats. Current Opinion in Cell Biology, 2006, 18, 386-394.	5.4	137
70	GEF and Glucosylation Assays on Liposomeâ€Bound Rac. Methods in Enzymology, 2006, 406, 70-80.	1.0	0
71	ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO Journal, 2005, 24, 2244-2253.	7.8	346
72	Helices sculpt membrane. Nature, 2005, 437, 1247-1248.	27.8	9

#	Article	IF	CITATIONS
73	Realâ€Time Assays for the Assembly–Disassembly Cycle of COP Coats on Liposomes of Defined Size. Methods in Enzymology, 2005, 404, 95-107.	1.0	30
74	A Phosphatidylserine-binding Site in the Cytosolic Fragment of Clostridium sordellii Lethal Toxin Facilitates Glucosylation of Membrane-bound Rac and Is Required for Cytotoxicity. Journal of Biological Chemistry, 2004, 279, 49876-49882.	3.4	46
75	SNARE Filtering by Dynamin. Cell, 2004, 119, 581-582.	28.9	14
76	Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature, 2003, 426, 563-566.	27.8	301
77	Selfâ€essembly of minimal COPII cages. EMBO Reports, 2003, 4, 419-424.	4.5	55
78	Dissociation of GDP Dissociation Inhibitor and Membrane Translocation Are Required for Efficient Activation of Rac by the Dbl Homology-Pleckstrin Homology Region of Tiam. Journal of Biological Chemistry, 2003, 278, 4756-4762.	3.4	70
79	Liposomes in the Study of GDPâ§,GTP Cycle of Arf and Related Small G Proteins. Methods in Enzymology, 2003, 372, 151-166.	1.0	6
80	Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO Journal, 2002, 21, 6105-6113.	7.8	246
81	ContrÃ1e de l'assemblage des manteaux protéiques COP par les petites protéines G Arf et Sar. Medecine/Sciences, 2002, 18, 1012-1016.	0.2	3
82	Dynamics of the COPII coat with GTP and stable analogues. Nature Cell Biology, 2001, 3, 531-537.	10.3	270
83	ER export: public transportation by the COPII coach. Current Opinion in Cell Biology, 2001, 13, 438-443.	5.4	188
84	Dual Interaction of ADP Ribosylation Factor 1 with Sec7 Domain and with Lipid Membranes during Catalysis of Guanine Nucleotide Exchange. Journal of Biological Chemistry, 1999, 274, 37629-37636.	3.4	63
85	Brefeldin A Acts to Stabilize an Abortive ARF–GDP–Sec7 Domain Protein Complex. Molecular Cell, 1999, 3, 275-285.	9.7	421
86	Structure of the Sec7 domain of the Arf exchange factor ARNO. Nature, 1998, 392, 101-105.	27.8	181
87	PIP2: activatoror terminator of small G proteins?. Trends in Biochemical Sciences, 1998, 23, 98-99.	7.5	7
88	Activation of ADP-ribosylation Factor 1 GTPase-Activating Protein by Phosphatidylcholine-derived Diacylglycerols. Journal of Biological Chemistry, 1997, 272, 30848-30851.	3.4	151
89	Role of Protein-Phospholipid Interactions in the Activation of ARF1 by the Guanine Nucleotide Exchange Factor Arno. Journal of Biological Chemistry, 1997, 272, 22221-22226.	3.4	155
90	N-Terminal Hydrophobic Residues of the G-Protein ADP-Ribosylation Factor-1 Insert into Membrane Phospholipids upon GDP to GTP Exchangeâ€. Biochemistry, 1997, 36, 4675-4684.	2.5	327

#	Article	lF	CITATION
91	A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature, 1996, 384, 481-484.	27.8	468
92	Ras, Rap, and Rac Small GTP-binding Proteins Are Targets for Clostridium sordellii Lethal Toxin Glucosylation. Journal of Biological Chemistry, 1996, 271, 10217-10224.	3.4	202
93	GTP-dependent binding of Gi, Goand Gsto the γ-subunit of the effector of Gt. FEBS Letters, 1994, 343, 183-187.	2.8	5
94	Modulation of the GTPase Activity of Transducin. Kinetic Studies of Reconstituted Systems. Biochemistry, 1994, 33, 15215-15222.	2.5	24
95	Interaction between the retinal cyclic GMP phosphodiesterase inhibitor and transducin. Kinetics and affinity studies. Biochemistry, 1993, 32, 8636-8645.	2.5	87
96	GTP hydrolysis by purified .alphasubunit of transducin and its complex with the cyclic GMP phosphodiesterase inhibitor. Biochemistry, 1993, 32, 8646-8653.	2.5	133
97	The G Protein Cascade of Visual Transduction: Kinetics and Regulation. Novartis Foundation Symposium, 1993, 176, 112-127.	1.1	2
98	GTP hydrolysis mechanisms in ras p21 and in the ras-GAP complex studied by fluorescence measurements on tryptophan mutants. Biochemistry, 1991, 30, 8287-8295.	2.5	53
99	The Transducin Cycle in the Phototransduction Cascade. , 1991, , 207-220.		0
100	A novel magnesium-dependent mechanism for the activation of transducin by fluoride. FEBS Letters,	2.8	38