## Hugh Geaney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6781981/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Colloidal Synthesis of Wurtzite Cu <sub>2</sub> ZnSnS <sub>4</sub> Nanorods and Their<br>Perpendicular Assembly. Journal of the American Chemical Society, 2012, 134, 2910-2913.                                                                       | 6.6 | 381       |
| 2  | High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles<br>Through in Situ Formation of a Continuous Porous Network. Nano Letters, 2014, 14, 716-723.                                                          | 4.5 | 317       |
| 3  | Structuring materials for lithium-ion batteries: advancements in nanomaterial structure,<br>composition, and defined assembly on cell performance. Journal of Materials Chemistry A, 2014, 2,<br>9433.                                                 | 5.2 | 144       |
| 4  | Bioâ€derived Carbon Nanofibres from Lignin as Highâ€Performance Liâ€Ion Anode Materials. ChemSusChem,<br>2019, 12, 4516-4521.                                                                                                                          | 3.6 | 130       |
| 5  | Key scientific challenges in current rechargeable non-aqueous Li–O2 batteries: experiment and theory.<br>Physical Chemistry Chemical Physics, 2014, 16, 12093.                                                                                         | 1.3 | 120       |
| 6  | Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Research, 2015, 8, 1395-1442.                                                                                                | 5.8 | 106       |
| 7  | Spontaneous Room Temperature Elongation of CdS and Ag2S Nanorods via Oriented Attachment.<br>Journal of the American Chemical Society, 2009, 131, 12250-12257.                                                                                         | 6.6 | 90        |
| 8  | Synthesis of Tin Catalyzed Silicon and Germanium Nanowires in a Solvent–Vapor System and<br>Optimization of the Seed/Nanowire Interface for Dual Lithium Cycling. Chemistry of Materials, 2013,<br>25, 1816-1822.                                      | 3.2 | 88        |
| 9  | Electrodeposited Structurally Stable V <sub>2</sub> O <sub>5</sub> Inverse Opal Networks as High<br>Performance Thin Film Lithium Batteries. ACS Applied Materials & Interfaces, 2015, 7, 27006-27015.                                                 | 4.0 | 81        |
| 10 | High capacity binder-free nanocrystalline GeO2 inverse opal anodes for Li-ion batteries with long cycle life and stable cell voltage. Nano Energy, 2018, 43, 11-21.                                                                                    | 8.2 | 78        |
| 11 | 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion. Science and Technology of Advanced Materials, 2016, 17, 563-582.                                                                            | 2.8 | 77        |
| 12 | Copper Sulfide (Cu <i><sub>x</sub></i> S) Nanowireâ€inâ€Carbon Composites Formed from Direct<br>Sulfurization of the Metalâ€Organic Framework HKUSTâ€1 and Their Use as Liâ€ion Battery Cathodes.<br>Advanced Functional Materials, 2018, 28, 1800587. | 7.8 | 77        |
| 13 | Axial Si–Ge Heterostructure Nanowires as Lithium-Ion Battery Anodes. Nano Letters, 2018, 18, 5569-5575.                                                                                                                                                | 4.5 | 77        |
| 14 | Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes. ACS Nano, 2017,<br>11, 5933-5943.                                                                                                                                    | 7.3 | 69        |
| 15 | Direct Synthesis of Alloyed Si <sub>1–<i>x</i></sub> Ge <sub><i>x</i></sub> Nanowires for<br>Performance-Tunable Lithium Ion Battery Anodes. ACS Nano, 2017, 11, 10088-10096.                                                                          | 7.3 | 64        |
| 16 | Atomically Abrupt Silicon–Germanium Axial Heterostructure Nanowires Synthesized in a Solvent<br>Vapor Growth System. Nano Letters, 2013, 13, 1675-1680.                                                                                                | 4.5 | 61        |
| 17 | A Copper Silicide Nanofoam Current Collector for Directly Grown Si Nanowire Networks and their<br>Application as Lithiumâ€Ion Anodes. Advanced Functional Materials, 2020, 30, 2003278.                                                                | 7.8 | 57        |
| 18 | Alternative anodes for low temperature lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9. 14172-14213                                                                                                                                   | 5.2 | 55        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | High Density Germanium Nanowire Growth Directly from Copper Foil by Self-Induced Solid Seeding.<br>Chemistry of Materials, 2011, 23, 4838-4843.                                                                                            | 3.2  | 54        |
| 20 | A Rapid, Solvent-Free Protocol for the Synthesis of Germanium Nanowire Lithium-Ion Anodes with a<br>Long Cycle Life and High Rate Capability. ACS Applied Materials & Interfaces, 2014, 6, 18800-18807.                                    | 4.0  | 50        |
| 21 | Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide<br>Anode for Li-ion Batteries. Scientific Reports, 2017, 7, 42263.                                                                         | 1.6  | 49        |
| 22 | Dense Silicon Nanowire Networks Grown on a Stainlessâ€Steel Fiber Cloth: A Flexible and Robust Anode<br>for Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2105917.                                                                | 11.1 | 46        |
| 23 | High Density Growth of Indium seeded Silicon Nanowires in the Vapor phase of a High Boiling Point<br>Solvent. Chemistry of Materials, 2012, 24, 2204-2210.                                                                                 | 3.2  | 45        |
| 24 | Long Cycle Life, Highly Ordered SnO <sub>2</sub> /GeO <sub>2</sub> Nanocomposite Inverse Opal<br>Anode Materials for Liâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2005073.                                                  | 7.8  | 39        |
| 25 | 2D and 3D vanadium oxide inverse opals and hollow sphere arrays. CrystEngComm, 2014, 16, 10804-10815.                                                                                                                                      | 1.3  | 37        |
| 26 | Solution phase synthesis of silicon and germanium nanowires. Journal of Materials Chemistry C, 2013,<br>1, 4996.                                                                                                                           | 2.7  | 34        |
| 27 | High performance inverse opal Li-ion battery with paired intercalation and conversion mode electrodes. Journal of Materials Chemistry A, 2016, 4, 4448-4456.                                                                               | 5.2  | 34        |
| 28 | Perpendicular growth of catalyst-free germanium nanowire arrays. Chemical Communications, 2011, 47, 3843.                                                                                                                                  | 2.2  | 33        |
| 29 | Copper Silicide Nanowires as Hosts for Amorphous Si Deposition as a Route to Produce High Capacity<br>Lithium-Ion Battery Anodes. Nano Letters, 2019, 19, 8829-8835.                                                                       | 4.5  | 32        |
| 30 | Growth of Crystalline Copper Silicide Nanowires in High Yield within a High Boiling Point Solvent<br>System. Chemistry of Materials, 2012, 24, 4319-4325.                                                                                  | 3.2  | 31        |
| 31 | Role of Defects and Growth Directions in the Formation of Periodically Twinned and Kinked Unseeded Germanium Nanowires. Crystal Growth and Design, 2011, 11, 3266-3272.                                                                    | 1.4  | 30        |
| 32 | Electrochemical investigation of the role of MnO <sub>2</sub> nanorod catalysts in water containing<br>and anhydrous electrolytes for Li–O <sub>2</sub> battery applications. Physical Chemistry Chemical<br>Physics, 2015, 17, 6748-6759. | 1.3  | 28        |
| 33 | Examining the Role of Electrolyte and Binders in Determining Discharge Product Morphology and<br>Cycling Performance of Carbon Cathodes in Li-O2Batteries. Journal of the Electrochemical Society,<br>2016, 163, A43-A49.                  | 1.3  | 28        |
| 34 | The influence of carrier density and doping type on lithium insertion and extraction processes at silicon surfaces. Electrochimica Acta, 2014, 135, 356-367.                                                                               | 2.6  | 26        |
| 35 | Colloidal WSe <sub>2</sub> nanocrystals as anodes for lithium-ion batteries. Nanoscale, 2020, 12, 22307-22316.                                                                                                                             | 2.8  | 26        |
| 36 | Direct Growth of Si, Ge, and Si–Ge Heterostructure Nanowires Using Electroplated Zn: An Inexpensive<br>Seeding Technique for Liâ€ion Alloying Anodes. Small, 2021, 17, e2005443.                                                           | 5.2  | 26        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fully Porous GaN p–n Junction Diodes Fabricated by Chemical Vapor Deposition. ACS Applied Materials<br>& Interfaces, 2014, 6, 17954-17964.                                                                            | 4.0 | 25        |
| 38 | Influence of Binders and Solvents on Stability of Ru/RuO <sub><i>x</i></sub> Nanoparticles on ITO<br>Nanocrystals as Li–O <sub>2</sub> Battery Cathodes. ChemSusChem, 2017, 10, 575-586.                              | 3.6 | 25        |
| 39 | Aligned Copper Zinc Tin Sulfide Nanorods as Lithium-Ion Battery Anodes with High Specific Capacities.<br>Journal of Physical Chemistry C, 2018, 122, 20090-20098.                                                     | 1.5 | 25        |
| 40 | Two-Dimensional SnSe Nanonetworks: Growth and Evaluation for Li-Ion Battery Applications. ACS<br>Applied Energy Materials, 2020, 3, 6602-6610.                                                                        | 2.5 | 25        |
| 41 | Tunable Core–Shell Nanowire Active Material for High Capacity Li-Ion Battery Anodes Comprised of<br>PECVD Deposited aSi on Directly Grown Ge Nanowires. ACS Applied Materials & Interfaces, 2019, 11,<br>19372-19380. | 4.0 | 24        |
| 42 | Solvent-less method for efficient photocatalytic α-Fe2O3 nanoparticles using macromolecular polymeric precursors. New Journal of Chemistry, 2016, 40, 6768-6776.                                                      | 1.4 | 23        |
| 43 | Enhancing the performance of germanium nanowire anodes for Li-ion batteries by direct growth on textured copper. Chemical Communications, 2019, 55, 7780-7783.                                                        | 2.2 | 23        |
| 44 | The influence of 1D, meso- and crystal structures on charge transport and recombination in solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 12088.                                  | 5.2 | 22        |
| 45 | The effect of particle size, morphology and C-rates on 3D structured Co <sub>3</sub> O <sub>4</sub><br>inverse opal conversion mode anode materials. Materials Research Express, 2017, 4, 025011.                     | 0.8 | 22        |
| 46 | A Nanowire Nest Structure Comprising Copper Silicide and Silicon Nanowires for Lithiumâ€Ion Battery<br>Anodes with High Areal Loading. Small, 2021, 17, e2102333.                                                     | 5.2 | 22        |
| 47 | Optimizing Vanadium Pentoxide Thin Films and Multilayers from Dip-Coated Nanofluid Precursors. ACS<br>Applied Materials & Interfaces, 2014, 6, 2031-2038.                                                             | 4.0 | 21        |
| 48 | Alloying Germanium Nanowire Anodes Dramatically Outperform Graphite Anodes in Full-Cell<br>Chemistries over a Wide Temperature Range. ACS Applied Energy Materials, 2021, 4, 1793-1804.                               | 2.5 | 21        |
| 49 | Metal surface nucleated supercritical fluid–solid–solid growth of Si and Ge/SiOx core–shell<br>nanowires. Journal of Materials Chemistry, 2010, 20, 135-144.                                                          | 6.7 | 20        |
| 50 | Size controlled growth of germanium nanorods and nanowires by solution pyrolysis directly on a substrate. Chemical Communications, 2012, 48, 5446.                                                                    | 2.2 | 19        |
| 51 | On the Use of Gas Diffusion Layers as Current Collectors in Li-O <sub>2</sub> Battery Cathodes.<br>Journal of the Electrochemical Society, 2014, 161, A1964-A1968.                                                    | 1.3 | 18        |
| 52 | Electrophoretic Deposition of Tin Sulfide Nanocubes as Highâ€Performance Lithiumâ€Ion Battery Anodes.<br>ChemElectroChem, 2019, 6, 3049-3056.                                                                         | 1.7 | 18        |
| 53 | Influence of Carbonate-Based Additives on the Electrochemical Performance of Si NW Anodes Cycled<br>in an Ionic Liquid Electrolyte. Nano Letters, 2020, 20, 7011-7019.                                                | 4.5 | 18        |
| 54 | Doping controlled roughness and defined mesoporosity in chemically etched silicon nanowires with tunable conductivity. Journal of Applied Physics, 2013, 114, 034309.                                                 | 1.1 | 17        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films. Scientific Reports, 2015, 5, 11574.                       | 1.6 | 15        |
| 56 | Assessing Charge Contribution from Thermally Treated Ni Foam as Current Collectors for Li-Ion<br>Batteries. Journal of the Electrochemical Society, 2016, 163, A1805-A1811.                                     | 1.3 | 14        |
| 57 | Mesoporosity in doped silicon nanowires from metal assisted chemical etching monitored by phonon scattering. Semiconductor Science and Technology, 2016, 31, 014003.                                            | 1.0 | 14        |
| 58 | Synthesis of silicon–germanium axial nanowire heterostructures in a solvent vapor growth system using indium and tin catalysts. Physical Chemistry Chemical Physics, 2015, 17, 6919-6924.                       | 1.3 | 13        |
| 59 | Investigation into the Selenization Mechanisms of Wurtzite CZTS Nanorods. ACS Applied Materials<br>& Interfaces, 2018, 10, 7117-7125.                                                                           | 4.0 | 12        |
| 60 | Amorphization driven Na-alloying in Si <sub><i>x</i></sub> Ge <sub>1â^'<i>x</i></sub> alloy nanowires for Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 20626-20634.                             | 5.2 | 12        |
| 61 | Fabrication of p-type porous GaN on silicon and epitaxial GaN. Applied Physics Letters, 2013, 103, .                                                                                                            | 1.5 | 11        |
| 62 | Silicon nanowire growth on carbon cloth for flexible Li-ion battery anodes. Materials Today Energy, 2022, 27, 101030.                                                                                           | 2.5 | 11        |
| 63 | Layered Bimetallic Metalâ€Organic Material Derived<br>Cu <sub>2</sub> SnS <sub>3</sub> /SnS <sub>2</sub> /C Composite for Anode Applications in Lithiumâ€lon<br>Batteries. ChemElectroChem, 2018, 5, 3764-3770. | 1.7 | 10        |
| 64 | Synthesis and Characterization of CuZnSe <sub>2</sub> Nanocrystals in Wurtzite, Zinc Blende, and<br>Core–Shell Polytypes. Chemistry of Materials, 2019, 31, 10085-10093.                                        | 3.2 | 10        |
| 65 | Epitaxial growth of (0001) oriented porous GaN layers by chemical vapour deposition. CrystEngComm, 2014, 16, 10255-10261.                                                                                       | 1.3 | 9         |
| 66 | The selective synthesis of nickel germanide nanowires and nickel germanide seeded germanium nanowires within a solvent vapour growth system. CrystEngComm, 2017, 19, 2072-2078.                                 | 1.3 | 8         |
| 67 | Palladium Nanoparticles as Catalysts for Li-O <sub>2 </sub> Battery Cathodes. ECS Transactions, 2014, 58, 21-29.                                                                                                | 0.3 | 7         |
| 68 | Tin-Based Oxide, Alloy, and Selenide Li-Ion Battery Anodes Derived from a Bimetallic Metal–Organic<br>Material. Journal of Physical Chemistry C, 2021, 125, 1180-1189.                                          | 1.5 | 6         |
| 69 | Novel Solid-State Route to Nanostructured Tin, Zinc and Cerium Oxides as Potential Materials for<br>Sensors. Journal of Nanoscience and Nanotechnology, 2014, 14, 6748-6753.                                    | 0.9 | 5         |
| 70 | Electrophoretic Deposition of Spherical and Rod-Shaped Nanocrystals into Close Packed Superlattices. ECS Transactions, 2009, 19, 209-219.                                                                       | 0.3 | 4         |
| 71 | Tailoring Asymmetric Dischargeâ€Charge Rates and Capacity Limits to Extend Liâ€O <sub>2</sub> Battery<br>Cycle Life. ChemElectroChem, 2017, 4, 628-635.                                                         | 1.7 | 4         |
| 72 | Linear heterostructured Ni <sub>2</sub> Si/Si nanowires with abrupt interfaces synthesised in solution. Nanoscale, 2018, 10, 19182-19187.                                                                       | 2.8 | 4         |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Highlighting the Importance of Full-Cell Testing for High Performance Anode Materials Comprising Li<br>Alloying Nanowires. Journal of the Electrochemical Society, 2019, 166, A2784-A2790.                                                                      | 1.3 | 4         |
| 74 | Evolution of Hierarchically Layered Cu-Rich Silicide Nanoarchitectures. Crystal Growth and Design, 2020, 20, 6677-6682.                                                                                                                                         | 1.4 | 4         |
| 75 | Temperature induced diameter variation of silicon nanowires <i>via</i> a liquid–solid phase transition in the Zn seed. Chemical Communications, 2021, 57, 12504-12507.                                                                                          | 2.2 | 4         |
| 76 | Growing Oxide Nanowires and Nanowire Networks by Solid State Contact Diffusion into Solution-Processed Thin Films. Small, 2016, 12, 5954-5962.                                                                                                                  | 5.2 | 3         |
| 77 | Multimodal surface analyses of chemistry and structure of biominerals in rodent pineal gland concretions. Applied Surface Science, 2019, 469, 378-386.                                                                                                          | 3.1 | 3         |
| 78 | Facet Specific Gold Tip Growth on Semiconductor Nanorods. ECS Transactions, 2009, 25, 17-29.                                                                                                                                                                    | 0.3 | 1         |
| 79 | (Invited) Fully Porous GaN p-n Junctions Fabricated by Chemical Vapor Deposition: A Green Technology<br>towards More Efficient LEDs. ECS Transactions, 2015, 66, 163-176.                                                                                       | 0.3 | 1         |
| 80 | Patterning optically clear films: Coplanar transparent and color-contrasted thin films from<br>interdiffused electrodeposited and solution-processed metal oxides. Journal of Vacuum Science and<br>Technology A: Vacuum, Surfaces and Films, 2017, 35, 020602. | 0.9 | 1         |
| 81 | Common Battery Anode Testing Protocols Are Not Suitable for New Combined Alloying and Conversion Materials. ChemElectroChem, 2018, 5, 3757-3763.                                                                                                                | 1.7 | 1         |
| 82 | (Invited) Semiconductor Nanostructures for Antireflection Coatings, Transparent Contacts,<br>Junctionless Thermoelectrics and Li-Ion Batteries. ECS Transactions, 2013, 53, 25-44.                                                                              | 0.3 | 0         |
| 83 | Pseudocapacitive Charge Storage at Nanoscale Silicon Electrodes. ECS Transactions, 2015, 66, 39-48.                                                                                                                                                             | 0.3 | 0         |