
Wolfgang Kainz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6781433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Virtual Family—development of surface-based anatomical models of two adults and two children for dosimetric simulations. Physics in Medicine and Biology, 2010, 55, N23-N38.	1.6	1,237
2	Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0. Physics in Medicine and Biology, 2014, 59, 5287-5303.	1.6	355
3	MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck. PLoS ONE, 2015, 10, e0124126.	1.1	220
4	Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head. IEEE Transactions on Electromagnetic Compatibility, 2006, 48, 397-407.	1.4	152
5	Complexity of MRI induced heating on metallic leads: Experimental measurements of 374 configurations. BioMedical Engineering OnLine, 2008, 7, 11.	1.3	148
6	Dosimetric comparison of the specific anthropomorphic mannequin (SAM) to 14 anatomical head models using a novel definition for the mobile phone positioning. Physics in Medicine and Biology, 2005, 50, 3423-3445.	1.6	116
7	A Technique to Evaluate MRI-Induced Electric Fields at the Ends of Practical Implanted Lead. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 305-313.	2.9	103
8	Thermal Tissue Damage Model Analyzed for Different Wholeâ€Body SAR and Scan Durations for Standard MR Body Coils. Magnetic Resonance in Medicine, 2014, 71, 421-431.	1.9	76
9	Assessment of Human Exposure to Electromagnetic Fields: Review and Future Directions. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 1619-1630.	1.4	62
10	Evaluation of the RF heating of a generic deep brain stimulator exposed in 1.5 T magnetic resonance scanners. Bioelectromagnetics, 2013, 34, 104-113.	0.9	60
11	Advances in Computational Human Phantoms and Their Applications in Biomedical Engineering—A Topical Review. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 1-23.	2.7	58
12	Computational and experimental studies of an orthopedic implant: MRIâ€related heating at 1.5â€T/64â€MHz and 3â€T/128â€MHz. Journal of Magnetic Resonance Imaging, 2013, 37, 491-497.	1.9	57
13	Wholeâ€body and local RF absorption in human models as a function of anatomy and position within 1.5T MR body coil. Magnetic Resonance in Medicine, 2014, 71, 839-845.	1.9	55
14	Virtual populationâ€based assessment of the impact of 3 Tesla radiofrequency shimming and thermoregulation on safety and B ₁ + uniformity. Magnetic Resonance in Medicine, 2016, 76, 986-997.	1.9	42
15	Pregnant women models analyzed for <scp>RF</scp> exposure and temperature increase in <scp>3T</scp> <scp>RF</scp> shimmed birdcages. Magnetic Resonance in Medicine, 2017, 77, 2048-2056.	1.9	42
16	The Role of Computational Modeling and Simulation in the Total Product Life Cycle of Peripheral Vascular Devices. Journal of Medical Devices, Transactions of the ASME, 2017, 11, .	0.4	35
17	A Transmission Line Model for the Evaluation of MRI RF-Induced Fields on Active Implantable Medical Devices. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 4271-4281.	2.9	30
18	MRI Heating Reduction for External Fixation Devices Using Absorption Material. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 635-642.	1.4	21

WOLFGANG KAINZ

#	Article	IF	CITATIONS
19	Numerical Investigations of MRI RF-Induced Heating for External Fixation Device in TEM and Birdcage Body Coils at 3 T. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 598-604.	1.4	21
20	Evaluation of MRI RF electromagnetic field induced heating near leads of cochlear implants. Physics in Medicine and Biology, 2018, 63, 135020.	1.6	21
21	Patient-specific simulations and measurements of the magneto-hemodynamic effect in human primary vessels. Physiological Measurement, 2012, 33, 117-130.	1.2	20
22	Functionalized anatomical models for EM-neuron Interaction modeling. Physics in Medicine and Biology, 2016, 61, 4390-4401.	1.6	19
23	Computational and experimental investigation of RFâ€induced heating for multiple orthopedic implants. Magnetic Resonance in Medicine, 2019, 82, 1848-1858.	1.9	19
24	Functionalized Anatomical Models for Computational Life Sciences. Frontiers in Physiology, 2018, 9, 1594.	1.3	18
25	Prediction of MRI RF Exposure for Implantable Plate Devices Using Artificial Neural Network. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 673-681.	1.4	18
26	Lead Electromagnetic Model to Evaluate RF-Induced Heating of a Coax Lead: A Numerical Case Study at 128 MHz. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2018, 2, 286-293.	2.3	17
27	Magnetic resonance conditionality of abandoned leads from active implantable medical devices at 1.5 T. Magnetic Resonance in Medicine, 2022, 87, 394-408.	1.9	16
28	Evaluations of the MRI RF-Induced Heating for Helical Stents Under a 1.5T MRI System. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 57-64.	1.4	15
29	Numerical study of SAR for multi-component orthopaedic hip replacement system during MRI. , 2016, , .		13
30	Anatomical Model Uncertainty for RF Safety Evaluation of Metallic Implants Under MRI Exposure. Bioelectromagnetics, 2019, 40, 458-471.	0.9	12
31	Impact of Electrode Structure on RF-Induced Heating for an AIMD Implanted Lead in a 1.5-Tesla MRI System. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2019, 3, 247-253.	2.3	12
32	On the Model Validation of Active Implantable Medical Device for MRI Safety Assessment. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 2234-2242.	2.9	12
33	Radiofrequencyâ€induced heating of broken and abandoned implant leads during magnetic resonance examinations. Magnetic Resonance in Medicine, 2021, 86, 2156-2164.	1.9	12
34	A Novel Design of Implantable Esophageal Stent to Reduce the MRI RF-Induced Heating. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 805-812.	1.4	11
35	Novel mechanistic model and computational approximation for electromagnetic safety evaluations of electrically short implants. Physics in Medicine and Biology, 2018, 63, 225015.	1.6	11
36	Investigation of RF-Induced Heating Near Interventional Catheters at 1.5 T MRI: A Combined Modeling and Experimental Study. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 1423-1431.	1.4	11

WOLFGANG KAINZ

#	Article	IF	CITATIONS
37	On the development of equivalent medium for active implantable device radiofrequency safety assessment. Magnetic Resonance in Medicine, 2019, 82, 1164-1176.	1.9	11
38	A Novel Device Model Validation Strategy for 1.5- and 3-T MRI Heating Safety Assessment. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 6381-6389.	2.4	11
39	MRSaiFE: An Al-Based Approach Towards the Real-Time Prediction of Specific Absorption Rate. IEEE Access, 2021, 9, 140824-140834.	2.6	11
40	Effect of insulating layer material on RF-induced heating for external fixation system in 1.5 T MRI system. Electromagnetic Biology and Medicine, 2014, 33, 223-227.	0.7	10
41	Computational study of external fixation devices surface heating in MRI RF environment. , 2012, , .		9
42	Investigations on Tissue-Simulating Medium for MRI RF Safety Assessment for Patients With Active Implantable Medical Devices. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 1091-1097.	1.4	9
43	An Absorbing Radio Frequency Shield to Reduce RF Heating Induced by Deep Brain Stimulator During 1.5-T MRI. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 1726-1732.	1.4	8
44	Simplified Transfer Function Assessment of Implantable Leads for MRI Safety Evaluations. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 1432-1437.	1.4	8
45	Genetic algorithm search for the worstâ€case MRI RF exposure for a multiconfiguration implantable fixation system modeled using artificial neural networks. Magnetic Resonance in Medicine, 2020, 84, 2754-2764.	1.9	8
46	A technique for the reduction of RFâ€induced heating of active implantable medical devices during MRI. Magnetic Resonance in Medicine, 2022, 87, 349-364.	1.9	8
47	Sensitivity of the transfer function of a helix lead on the dielectric properties of the surrounding media: A case study. , 2017, , .		7
48	Study on Search Strategies for Assessing the Worst Case RF-Induced Heating for Multi-Configuration Implant System Under MRI. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 43-51.	1.4	6
49	Modeling radiofrequency responses of realistic multi-electrode leads containing helical and straight wires. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2020, 33, 421-437.	1.1	6
50	Wireâ€based sternal closure: MRIâ€related heating at 1.5 T/64 MHz and 3 T/128 MHz based on simulation and experimental phantom study. Magnetic Resonance in Medicine, 2020, 83, 1055-1065.	1.9	6
51	Influence of Metallic Shielding on Radio Frequency Energy-Induced Heating of Leads With Straight and Helical Wires: A Numerical Case Study. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 509-515.	2.9	6
52	Efficient evaluation of MRI-induced electric fields in the vicinity of implantable lead. , 2013, , .		5
53	Impacts of RF shimming on MRI induced heating of implantable medical lead in 3T birdcage coil. , 2017, , .		5
54	Comparison of Different Assessment Quantities to Evaluate Lead Electromagnetic Model for Radio Frequency Energy-Induced Heating. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2020, 4, 157-163.	2.3	5

Wolfgang Kainz

#	Article	IF	CITATIONS
55	Developing AIMD Models Using Orthogonal Pathways for MRI Safety Assessment. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 2689-2695.	1.4	5
56	Dual-Frequency High-Electric-Field Generator for MRI Safety Testing of Passive Implantable Medical Devices. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 5423-5431.	2.9	5
5 7	Modeling radio-frequency energy-induced heating due to the presence of transcranial electric stimulation setup at 3T. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2020, 33, 793-807.	1.1	5
58	Effects of patient orientations, landmark positions, and device positions on the MRI RFâ€induced heating for modular external fixation devices. Magnetic Resonance in Medicine, 2021, 85, 1669-1680.	1.9	5
59	Impact of RF Shimming on RF-Induced Heating Near Implantable Medical Electrodes in a 3T MRI Coil. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 52-64.	1.4	4
60	Influence of a Metallic Shield on RF-Induced Heating of a Lead with Straight and Helical Wires. , 2019, ,		2
61	Modeling Electromagnetic Exposure in Humans Inside a Whole-Body Birdcage Coil Excited by a Two-Channel Parallel Transmitter Operated at 123 MHz. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2020, 4, 247-253.	2.3	1
62	A Fast and Accurate Transfer Function Validation Strategy Using Optimized Rotation-Invariant Lead Trajectories. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 673-680.	1.4	1
63	Erratum to "A Transmission Line Model for the Evaluation of MRI RF-Induced Fields on Active Implantable Medical Devices― IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 2468-2468.	2.9	1
64	Erratum to "MRI Heating Reduction for External Fixation Devices Using Absorption Material―[Aug 15 635-642]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 981-981.	1.4	0
65	Erratum to "On the Model Validation of Active Implantable Medical Device for MRI Safety Assessment― IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 2469-2469.	2.9	0
66	A Cascaded Heterogeneous Equivalent Network for Evaluating RF-Induced Hazards on Active Implantable Medical Devices. IEEE Transactions on Electromagnetic Compatibility, 2022, 64, 286-294.	1.4	0
67	Correction to "MRSaiFE: An Al-Based Approach Toward the Real-Time Prediction of Specific Absorption Rate― IEEE Access, 2022, 10, 19925-19925.	2.6	0