Bruce A. Pint

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6781397/bruce-a-pint-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 336
 10,016
 52
 87

 papers
 citations
 h-index
 g-index

 366
 11,139
 2.6
 6.61

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
336	Corrosion of 316H stainless steel in flowing FLiNaK salt. <i>Journal of Nuclear Materials</i> , 2022 , 561, 15355	1 3.3	O
335	Effects of applied stress and grain size on creep-rupture lifetime prediction for Haynes 282 alloy. <i>Materials Science & Discourse and Processing</i> , 2022 , 838, 142785	5.3	3
334	Comprehensive insights into competitive oxidation/sulfidation reactions on binary ferritic alloys at high temperatures. <i>Corrosion Science</i> , 2022 , 110236	6.8	O
333	The Oxidation of the HiSiMo Cast Irons Alloyed with Cr/Al at 800 IIC. Oxidation of Metals, 2022, 97, 441-4	44%	
332	Burst and oxidation behavior of Cr-coated Zirlo during simulated LOCA testing. <i>Journal of Nuclear Materials</i> , 2022 , 564, 153679	3.3	O
331	Hydrothermal corrosion and steam oxidation behavior comparison of UAM and conventional Zry-4. Journal of Nuclear Materials, 2022 , 567, 153806	3.3	
330	Compatibility of Alumina-Forming Austenitic Steels in Static and Flowing Pb. <i>Jom</i> , 2021 , 73, 4016	2.1	
329	Quantifying adherence of oxide scales on steels exposed to high temperature and pressure steam. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2021 , 72, 1315-1327	1.6	
328	First steps toward predicting corrosion behavior of structural materials in molten salts. <i>Journal of Nuclear Materials</i> , 2021 , 546, 152755	3.3	9
327	Conceptual Design of HFIR Irradiation Experiment for Material Compatibility Study on Liquid Sn Divertor. <i>Plasma and Fusion Research</i> , 2021 , 16, 2405040-2405040	0.5	1
326	Compatibility of SiC with ODS FeCrAl in flowing Pb-Li at 6001100 LC. Fusion Engineering and Design, 2021, 166, 112389	1.7	3
325	Effect of Water Vapor on Lifetime of 625 and 120 Foils During Oxidation Between 650 and 800 °C. Oxidation of Metals, 2021 , 96, 589	1.6	2
324	Steam oxidation of chromium corrosion barrier coatings for sic-based accident tolerant fuel cladding. <i>Journal of Nuclear Materials</i> , 2021 , 543, 152561	3.3	2
323	Invited Review Paper in Commemoration of Over 50 Years of Oxidation of Metals: Addressing the Role of Water Vapor on Long-Term Stainless Steel Oxidation Behavior. <i>Oxidation of Metals</i> , 2021 , 95, 335-357	1.6	5
322	Steam oxidation of ytterbium disilicate environmental barrier coatings with and without a silicon bond coat. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 2285-2300	3.8	4
321	A Tracer Study on sCO2 Corrosion with Multiple Oxygen-Bearing Impurities. <i>Oxidation of Metals</i> , 2021 , 96, 571	1.6	1
320	Editorial on this Focus Issue on Key Corrosion Topics. <i>Oxidation of Metals</i> , 2021 , 96, 1-2	1.6	

319	Pre-Oxidation to Improve Liquid Metal Compatibility. Oxidation of Metals, 2021, 96, 231-240	1.6	1
318	Data analytics approach to predict high-temperature cyclic oxidation kinetics of NiCr-based Alloys. <i>Npj Materials Degradation</i> , 2021 , 5,	5.7	1
317	Focus Issue on Unique Materials, Techniques, and Environments. Oxidation of Metals, 2021, 96, 183-184	1.6	
316	Oxidation of ultrahigh temperature ceramics: kinetics, mechanisms, and applications. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 6130-6150	6	10
315	Strength and rupture geometry of un-irradiated C26M FeCrAl under LOCA burst testing conditions. Journal of Nuclear Materials, 2021 , 557, 153242	3.3	8
314	Oxidation Behavior of Candidate NiCr Alloys for Engine Exhaust Valves: Part I E ffect of Minor Alloying Elements. <i>Oxidation of Metals</i> , 2021 , 95, 157-187	1.6	6
313	Effect of Pressure and Thermal Cycling on Long-Term Oxidation in CO2 and Supercritical CO2. <i>Oxidation of Metals</i> , 2020 , 94, 505-526	1.6	11
312	The Impact of Impurities on Alloy Behavior in Supercritical CO2 at 700 LC. <i>Oxidation of Metals</i> , 2020 , 94, 95-111	1.6	6
311	Effect of Air Plasma Sprayed Flash Bond Coatings on Furnace Cycle Lifetime of Disks and Rods. Journal of Engineering for Gas Turbines and Power, 2020 , 142,	1.7	2
310	Characterization of the Benefit of APS Flash Coatings in Improving TBC Lifetime. <i>Minerals, Metals and Materials Series</i> , 2020 , 739-746	0.3	
309	Principles of Corrosion in Nuclear Systems: Theory and Analytical Methods 2020 , 1-32		O
308	Computational Methods to Accelerate Development of Corrosion Resistant Coatings for Industrial Gas Turbines. <i>Minerals, Metals and Materials Series</i> , 2020 , 824-833	0.3	2
307	Compatibility of FeCrAlMo with flowing PbLi at 500\mathbb{P}650 \mathbb{P}C. Journal of Nuclear Materials, 2020, 528, 151	18,4,7	10
306	The Effect of Shot Peening on Steam Oxidation of 304H Stainless Steel. <i>Oxidation of Metals</i> , 2020 , 93, 159-174	1.6	7
305	A Domestic Program for Liquid Metal PFC Research in Fusion. <i>Journal of Fusion Energy</i> , 2020 , 39, 441-44	7 1.6	7
304	Burst behavior of nuclear grade FeCrAl and Zircaloy-2 fuel cladding under simulated cyclic dryout conditions. <i>Journal of Nuclear Materials</i> , 2020 , 539, 152256	3.3	4
303	Role of bond coat processing methods on the durability of plasma sprayed thermal barrier systems. <i>Surface and Coatings Technology</i> , 2019 , 375, 782-792	4.4	16
302	Effect of APS flash bond coatings and curvature on TBC performance on rod specimens. <i>Surface and Coatings Technology</i> , 2019 , 378, 124940	4.4	5

301	3D Microscopy to Assess the Effect of High Temperature Cyclic Oxidation on the Deformation of Cast and ODS FeCrAlY Alloys. <i>Oxidation of Metals</i> , 2019 , 91, 327-347	1.6	3
300	Critical Exploration of Liquid Metal Plasma-Facing Components in a Fusion Nuclear Science Facility. <i>Fusion Science and Technology</i> , 2019 , 75, 886-917	1.1	19
299	Steam oxidation behavior of Ni-base superalloys 690, 725 and X-750 at 600 and 650 °C. Corrosion Science, 2019 , 157, 487-497	6.8	3
298	Effect of pressure and impurities on oxidation in supercritical CO2. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2019 , 70, 1400-1409	1.6	17
297	The Effect of HVOF Bond Coating with APS Flash Coating on TBC Performance. <i>Oxidation of Metals</i> , 2019 , 91, 691-704	1.6	7
296	Re-establishing the paradigm for evaluating halide salt compatibility to study commercial chloride salts at 600°CB00°C. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2019 , 70, 1439-1449	1.6	12
295	Lifetime modeling for a supercritical CO2-molten salt CSP power block 2019 ,		1
294	High Temperature Oxidation Lifetime Modeling of Thin-Walled Components 2019,		2
293	Steam Oxidation Behavior of FeCrAl Cladding. <i>Minerals, Metals and Materials Series</i> , 2019 , 1451-1460	0.3	3
292	Accident Tolerant FeCrAl Fuel Cladding: Current Status Towards Commercialization. <i>Minerals, Metals and Materials Series</i> , 2019 , 1381-1389	0.3	1
291	The effect of bond coating surface modification on the performance of atmospheric plasma spray thermal barrier coatings. <i>Surface and Coatings Technology</i> , 2019 , 378, 125042	4.4	8
290	The Effect of Coating Composition and Geometry on Thermal Barrier Coatings Lifetime. <i>Journal of Engineering for Gas Turbines and Power</i> , 2019 , 141,	1.7	6
289	Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding. <i>Journal of Nuclear Materials</i> , 2018 , 501, 59-71	3.3	57
288	Performance of vacuum plasma spray and HVOF bond coatings at 900l and 1100 LC. Surface and Coatings Technology, 2018 , 337, 136-140	4.4	8
287	Characterization of chromia scales formed in supercritical carbon dioxide. <i>Materials at High Temperatures</i> , 2018 , 35, 39-49	1.1	17
286	Accident Tolerant FeCrAl Fuel Cladding: Current Status Towards Commercialization. <i>Minerals, Metals and Materials Series</i> , 2018 , 165-173	0.3	2
285	The Effect of CO2 Pressure on Chromia Scale Microstructure at 750°C. Jom, 2018 , 70, 1511-1519	2.1	12
284	STEM and APT characterization of scale formation on a La,Hf,Ti-doped NiCrAl model alloy. <i>Micron</i> , 2018 , 109, 41-52	2.3	14

283	Steam Oxidation Behavior of FeCrAl Cladding. Minerals, Metals and Materials Series, 2018, 235-244	0.3	2
282	High-temperature behavior of oxide dispersion strengthening CoNiCrAlY. <i>Materials at High Temperatures</i> , 2018 , 35, 108-119	1.1	11
281	Development of Creep-Resistant, Alumina-Forming Ferrous Alloys for High-Temperature Structural Use 2018 ,		4
280	Performance of Wrought Superalloys in Extreme Environments. <i>Minerals, Metals and Materials Series</i> , 2018 , 165-178	0.3	3
279	Effect of pressure on supercritical CO2 compatibility of structural alloys at 750 °C. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2017 , 68, 151-158	1.6	39
278	Special Issue on Oxidation in Water Vapor. Oxidation of Metals, 2017, 87, 403-404	1.6	
277	Long-Term Oxidation Testing and Lifetime Modeling of Cast and ODS FeCrAl Alloys. <i>Oxidation of Metals</i> , 2017 , 87, 215-248	1.6	6
276	Grain Boundary Chemistry and Transport Through Alumina Scales on NiAl Alloys. <i>Oxidation of Metals</i> , 2017 , 88, 469-479	1.6	7
275	Special Issue on the High-Temperature Corrosion in Mixed Oxidant Environments. <i>Oxidation of Metals</i> , 2017 , 87, 679-680	1.6	
274	Oxidation of New Materials and Composites. Oxidation of Metals, 2017, 88, 235-236	1.6	
273	Special Issue on Advances in Relevant Characterization Techniques. Oxidation of Metals, 2017, 88, 421-4	4 2 126	
272	Interfaces in Oxides Formed on NiAlCr Doped with Y, Hf, Ti, and B. <i>Microscopy and Microanalysis</i> , 2017 , 23, 396-403	0.5	8
271	High-Temperature Protective Coatings. Oxidation of Metals, 2017, 88, 71-71	1.6	
270	Special Issue on Carburization and Metal Dusting. Oxidation of Metals, 2017, 87, 603-604	1.6	
269	Predicting Oxidation-Limited Lifetime of Thin-Walled Components of NiCrW Alloy 230. <i>Oxidation of Metals</i> , 2017 , 87, 11-38	1.6	21
268	Solid-liquid phase equilibria of Fe-Cr-Al alloys and spinels. <i>Journal of Nuclear Materials</i> , 2017 , 492, 128-	13333	17
267	Effect of Thermal Cycling on Compatibility in CO2 for Concentrated Solar Power Applications. <i>Oxidation of Metals</i> , 2017 , 87, 631-642	1.6	12
266	Fabrication of Oxide Dispersion Strengthened Bond Coats with Low Al2O3 Content. <i>Journal of Thermal Spray Technology</i> , 2017 , 26, 868-879	2.5	15

265	Effect of Al and Cr Content on Air and Steam Oxidation of FeCrAl Alloys and Commercial APMT Alloy. <i>Oxidation of Metals</i> , 2017 , 87, 431-441	1.6	44
264	Steam Oxidation Evaluation of Feter Alloys for Accident Tolerant Nuclear Fuel Cladding. <i>Oxidation of Metals</i> , 2017 , 87, 515-526	1.6	15
263	Design and Evaluation of Nuclear System for ARIES-ACT2 Power Plant with DCLL Blanket. <i>Fusion Science and Technology</i> , 2017 , 72, 17-40	1.1	13
262	Effect of Pressure and Thermal Cycling on Compatibility in CO2 for Concentrated Solar Power Applications 2017 ,		1
261	Special Issue on Corrosion Mechanical Loading Interactions. Oxidation of Metals, 2017, 88, 1-2	1.6	4
260	Special Issue on E undamentals and Numerical Simulations in High-Temperature Corrosion and Protection Focus Issue[]Oxidation of Metals, 2017 , 87, 271-272	1.6	
259	Development of 1100 LC Capable Alumina-Forming Austenitic Alloys. Oxidation of Metals, 2017, 87, 1-10	1.6	13
258	High-temperature materials 2017 , 67-104		4
257	Performance of FeCrAl for accident-tolerant fuel cladding in high-temperature steam. <i>Corrosion Reviews</i> , 2017 , 35, 167-175	3.2	17
256	Influences of Superalloy Composition and Pt Content on the Oxidation Behavior of Gamma G amma Prime NiPtAl Bond Coatings. <i>Oxidation of Metals</i> , 2016 , 86, 453-481	1.6	10
255	Factors Affecting TBC Furnace Cycle Lifetime: Temperature, Environment, Structure and Composition 2016 , 727-734		2
254	The Effect of Environment on Thermal Barrier Coating Lifetime. <i>Journal of Engineering for Gas Turbines and Power</i> , 2016 , 138,	1.7	9
253	Cladding burst behavior of Fe-based alloys under LOCA. Journal of Nuclear Materials, 2016, 470, 128-13	83.3	43
252	Uniform corrosion of FeCrAl alloys in LWR coolant environments. <i>Journal of Nuclear Materials</i> , 2016 , 479, 36-47	3.3	97
251	Field and Laboratory Evaluations of Commercial and Next-Generation Alumina-Forming Austenitic Foil for Advanced Recuperators. <i>Journal of Engineering for Gas Turbines and Power</i> , 2016 , 138,	1.7	4
250	The effects of temperature and substrate curvature on TBC lifetime and residual stress in alumina scales beneath APS YSZ. <i>Surface and Coatings Technology</i> , 2016 , 308, 19-23	4.4	11
249	Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: In Memory of John Stringer. <i>Oxidation of Metals</i> , 2016 , 86, 1-43	1.6	119
248	Advanced TEM characterization of oxide nanoparticles in ODS FeII2CrBAl alloys. <i>Journal of Materials Science</i> , 2016 , 51, 9190-9206	4.3	33

(2014-2015)

247	Microstructure and environmental resistance of low Cr ODS FeCrAl. <i>Materials at High Temperatures</i> , 2015 , 32, 123-132	1.1	22
246	APS TBC performance on directionally-solidified superalloy substrates with HVOF NiCoCrAlYHfSi bond coatings. <i>Surface and Coatings Technology</i> , 2015 , 284, 9-13	4.4	19
245	Oxidation, Creep and Fatigue Properties of Bare and Coated 31V Alloy. <i>Jom</i> , 2015 , 67, 68-76	2.1	3
244	Effect of steam on high temperature oxidation behaviour of alumina-forming alloys. <i>Materials at High Temperatures</i> , 2015 , 32, 28-35	1.1	63
243	Effect of Specimen Thickness on Microstructural Changes During Oxidation of the NiCrW Alloy 230 at 950🛮 050 CC. <i>Jom</i> , 2015 , 67, 2573-2588	2.1	10
242	Initial Assessment of Ni-Base Alloy Performance in 0.1 MPa and Supercritical CO2. <i>Jom</i> , 2015 , 67, 2615-7	2620	32
241	Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. <i>Journal of Nuclear Materials</i> , 2015 , 467, 703-716	3.3	227
240	Material Selection for Accident Tolerant Fuel Cladding. <i>Metallurgical and Materials Transactions E</i> , 2015 , 2, 190-196		31
239	Performance of chromia- and alumina-forming Fe- and Ni-base alloys exposed to metal dusting environments: The effect of water vapor and temperature. <i>Corrosion Science</i> , 2015 , 92, 58-68	6.8	27
238	Creep behavior of pack cementation aluminide coatings on Grade 91 ferritichartensitic alloy. <i>Surface and Coatings Technology</i> , 2014 , 240, 32-39	4.4	19
237	Effects of thermal cycling parameters on residual stresses in alumina scales of CoNiCrAlY and NiCoCrAlY bond coats. <i>Surface and Coatings Technology</i> , 2014 , 258, 608-614	4.4	8
236	The effect of cycle frequency, H2O and CO2 on TBC lifetime with NiCoCrAlYHfSi bond coatings. <i>Surface and Coatings Technology</i> , 2014 , 260, 107-112	4.4	14
235	Alloying and coating strategies for improved Pb l li compatibility in DEMO-type fusion reactors. <i>Journal of Nuclear Materials</i> , 2014 , 455, 330-334	3.3	13
234	Critical Assessment 4: Challenges in developing high temperature materials. <i>Materials Science and Technology</i> , 2014 , 30, 1387-1391	1.5	4
233	Silicon Carbide Oxidation in Steam up to 2IMPa. Journal of the American Ceramic Society, 2014 , 97, 2331	-33352	151
232	Effect of Environment on the High Temperature Oxidation Behavior of 718 and 718Plus 2014 , 667-677		2
231	Development of ODS FeCrAl for Compatibility in Fusion and Fission Energy Applications. <i>Jom</i> , 2014 , 66, 2458-2466	2.1	46
230	Effect of oxy-firing on corrosion rates at 600B50 °C. Materials and Corrosion - Werkstoffe Und Korrosion, 2014 , 65, 132-140	1.6	18

229	Effect of boron on the oxidation behavior of NiCrAlYHfTi in H2O and CO2 environments. <i>Surface and Coatings Technology</i> , 2014 , 260, 17-22	4.4	11
228	High Temperature Coatings. Oxidation of Metals, 2014 , 81, 1-1	1.6	1
227	Effect of Environment on the High Temperature Oxidation Behavior of 718 and 718Plus 2014,		2
226	Hot Corrosion and Degradation in Complex Atmospheres. Oxidation of Metals, 2013, 80, 453-454	1.6	
225	Alloy Development for High Temperature Corrosion and Protection. Oxidation of Metals, 2013, 80, 1-1	1.6	1
224	Water Vapor Effects in High Temperature Oxidation. Oxidation of Metals, 2013, 79, 443-444	1.6	1
223	Effect of H2O and CO2 on the Oxidation Behavior and Durability at High Temperature of ODS-FeCrAl. <i>Oxidation of Metals</i> , 2013 , 79, 627-638	1.6	22
222	Advanced Characterization Techniques in High-Temperature Oxidation and Corrosion Studies. <i>Oxidation of Metals</i> , 2013 , 79, 225-226	1.6	
221	Performance of advanced turbocharger alloys and coatings at 850\(\textit{D}\)50\(\textit{C}\) in air with water vapor. Surface and Coatings Technology, 2013 , 215, 90-95	4.4	9
220	Oxidation behavior of co-doped NiCrAl alloys in dry and wet air. <i>Surface and Coatings Technology</i> , 2013 , 237, 8-15	4.4	35
219	High temperature oxidation of fuel cladding candidate materials in steamBydrogen environments. Journal of Nuclear Materials, 2013 , 440, 420-427	3.3	269
218	Protection of zirconium by alumina- and chromia-forming iron alloys under high-temperature steam exposure. <i>Journal of Nuclear Materials</i> , 2013 , 438, 64-71	3.3	88
217	High Temperature Corrosion and Protection of Ceramics, Composites and Silicides. <i>Oxidation of Metals</i> , 2013 , 80, 205-205	1.6	
216	High-Temperature Corrosion in Fossil Fuel Power Generation: Present and Future. <i>Jom</i> , 2013 , 65, 1024-	1 <u>03</u> 2	36
215	Fundamentals and Numerical Simulations in High Temperature Corrosion and Protection. <i>Oxidation of Metals</i> , 2013 , 79, 1-1	1.6	
214	Impact of superalloy composition, bond coat roughness and water vapor on TBC lifetime with HVOF NiCoCrAlYHfSi bond coatings. <i>Surface and Coatings Technology</i> , 2013 , 237, 65-70	4.4	19
213	Effect of water vapor on the 1100°C oxidation behavior of plasma-sprayed TBCs with HVOF NiCoCrAlX bond coatings. <i>Surface and Coatings Technology</i> , 2013 , 215, 39-45	4.4	39
212	Characterization of specimens exposed in a Li loop. <i>Journal of Nuclear Materials</i> , 2013 , 442, S580-S584	3.3	3

(2012-2013)

211	Effect of water vapor on thermally-grown alumina scales on Pt-modified and simple aluminide bond coatings. <i>Surface and Coatings Technology</i> , 2013 , 237, 2-7	4.4	15
210	Effect of water vapor on thermally grown alumina scales on bond coatings. <i>Surface and Coatings Technology</i> , 2013 , 215, 30-38	4.4	26
209	Effect of water vapour content on thermal barrier coating lifetime. <i>Materials Science and Technology</i> , 2013 , 29, 828-834	1.5	5
208	Evaluation of Commercial and Next Generation Alumina-Forming Austenitic Foil for Advanced Recuperators 2013 ,		2
207	Pb□i compatibility issues for DEMO. <i>Journal of Nuclear Materials</i> , 2013 , 442, S572-S575	3.3	13
206	Oxidation behaviour of cast Nittr alloys in steam at 800°C. <i>Materials Science and Technology</i> , 2013 , 29, 822-827	1.5	33
205	Materials Considerations for Supercritical CO2 Turbine Cycles 2013 ,		6
204	Progress on DCLL Blanket Concept. Fusion Science and Technology, 2013, 64, 623-630	1.1	7
203	Evaluation of NiCrAl Foil for a Concentrated Solar Power Application 2013,		1
202	Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure. <i>Journal of Nuclear Materials</i> , 2012 , 427, 396-400	3.3	125
202		3·3 5·3	125
	pressure. Journal of Nuclear Materials, 2012 , 427, 396-400 Creep behavior of commercial FeCrAl foils: Beneficial and detrimental effects of oxidation. Materials Science & Description of the Commercial FeCrAl foils: Properties, Microstructure and Processing		
201	Creep behavior of commercial FeCrAl foils: Beneficial and detrimental effects of oxidation. Materials Science & Camp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 10-18		
201	Creep behavior of commercial FeCrAl foils: Beneficial and detrimental effects of oxidation. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 10-18 Inhibited aluminization of an ODS FeCr alloy. Surface and Coatings Technology, 2012, 206, 5036-5041 Effect of exposure in steam or argon on the creep properties of Ni-based alloys. Materials and	5·3 4·4 1.6	12
201 200	Creep behavior of commercial FeCrAl foils: Beneficial and detrimental effects of oxidation. Materials Science & Sci	5·3 4·4 1.6	12 4 5
201 200 199	Creep behavior of commercial FeCrAl foils: Beneficial and detrimental effects of oxidation. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 10-18 Inhibited aluminization of an ODS FeCr alloy. Surface and Coatings Technology, 2012, 206, 5036-5041 Effect of exposure in steam or argon on the creep properties of Ni-based alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2012, 63, 889-895 The Effect of Water Vapor and Superalloy Composition on Thermal Barrier Coating Lifetime 2012, 723-	5·3 4·4 1.6	12 4 5
201 200 199 198	Creep behavior of commercial FeCrAl foils: Beneficial and detrimental effects of oxidation. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 10-18 Inhibited aluminization of an ODS FeCr alloy. Surface and Coatings Technology, 2012, 206, 5036-5041 Effect of exposure in steam or argon on the creep properties of Ni-based alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2012, 63, 889-895 The Effect of Water Vapor and Superalloy Composition on Thermal Barrier Coating Lifetime 2012, 723-Mechanistic-Based Lifetime Predictions for High-Temperature Alloys and Coatings. Jom, 2012, 64, 1454. Interdiffusion behavior of Al-rich oxidation resistant coatings on ferritic Dartensitic alloys.	5.3 4.4 1.6 732	12 4 5 2

193	Microstructure and Chemistry of the Oxide Scale and Pt-containing Coatings Deposited on Superalloy N5. <i>Microscopy and Microanalysis</i> , 2012 , 18, 1676-1677	0.5	
192	Ionic segregation on grain boundaries in thermally grown alumina scales. <i>Materials at High Temperatures</i> , 2012 , 29, 257-263	1.1	18
191	Evaluation of Commercial Alumina-Forming Austenitic Foil for Advanced Recuperators 2011,		1
190	Effect of increased water vapor levels on TBC lifetime with Pt-containing bond coatings. <i>Surface and Coatings Technology</i> , 2011 , 206, 1566-1570	4.4	27
189	Cyclic oxidation behavior of HVOF bond coatings deposited on La- and Y-doped superalloys. <i>Surface and Coatings Technology</i> , 2011 , 206, 1600-1604	4.4	14
188	Characterization of the alumina scale formed on coated and uncoated doped superalloys. <i>Surface and Coatings Technology</i> , 2011 , 206, 1522-1528	4.4	24
187	The effect of coatings on the compatibility of FeIIr steels with PbIIi. <i>Journal of Nuclear Materials</i> , 2011 , 417, 1195-1199	3.3	17
186	Overview of Strategies for High-Temperature Creep and Oxidation Resistance of Alumina-Forming Austenitic Stainless Steels. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2011 , 42, 922-931	2.3	96
185	Performance of Al-rich oxidation resistant coatings for Fe-base alloys. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2011 , 62, 549-560	1.6	34
184	High-growth rate YSZ thermal barrier coatings deposited by MOCVD demonstrate high thermal cycling lifetime. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2011 , 528, 978-985	5.3	13
183	The Future of Alumina-Forming Alloys: Challenges and Applications for Power Generation. <i>Materials Science Forum</i> , 2011 , 696, 57-62	0.4	12
182	Evaluation of Alumina-Forming Austenitic Foil for Advanced Recuperators. <i>Journal of Engineering for Gas Turbines and Power</i> , 2011 , 133,	1.7	11
181	High-Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel. <i>Journal of Engineering for Gas Turbines and Power</i> , 2011 , 133,	1.7	8
180	High Temperature Corrosion of Alumina-forming Iron, Nickel and Cobalt-base Alloys 2010 , 606-645		15
179	Progress in the development of insulator coating for liquid lithium blankets. <i>Fusion Engineering and Design</i> , 2010 , 85, 1301-1306	1.7	35
178	Effect of Hf and Y alloy additions on aluminide coating performance. <i>Surface and Coatings Technology</i> , 2010 , 204, 3287-3293	4.4	73
177	Determination of the ductile to brittle temperature transition of aluminide coatings and its influence on the mechanical behavior of coated specimens. <i>Surface and Coatings Technology</i> , 2010 , 205, 1195-1199	4.4	12
176	Characterization of the alumina scale formed on a commercial MCrAlYHfSi coating. <i>Surface and Coatings Technology</i> , 2010 , 205, 1178-1182	4.4	44

(2008-2010)

175	Effect of superalloy substrate and bond coating on TBC lifetime. <i>Surface and Coatings Technology</i> , 2010 , 205, 1236-1240	4.4	40	
174	Oxidation of Superalloys in Extreme Environments 2010 ,		6	
173	Development of Alumina-Forming Austenitic Alloys for Advanced Recuperators 2009,		3	
172	Characterization of alumina interfaces in TBC systems. <i>Journal of Materials Science</i> , 2009 , 44, 1676-1680	64.3	53	
171	High-temperature oxidation-resistant alloys: Recent developments in science and applications. <i>Jom</i> , 2009 , 61, 42-43	2.1	17	
170	Effects of prior surface damage on high-temperature oxidation of Fe-, Ni-, and Co-based alloys. <i>Wear</i> , 2009 , 267, 380-386	3.5	21	
169	Formation and oxidation performance of low-temperature pack aluminide coatings on ferritic martensitic steels. <i>Surface and Coatings Technology</i> , 2009 , 204, 766-770	4.4	35	
168	Comparison of the oxidation behavior of hand El NiPtAl coatings. <i>Surface and Coatings Technology</i> , 2009 , 204, 816-819	4.4	27	
167	Initial characterization of VIACrIATi and MHD coatings exposed to flowing Li. <i>Journal of Nuclear Materials</i> , 2009 , 386-388, 712-715	3.3	20	
166	Factors affecting aluminum depletion during cyclic oxidation of Fe-base alumina-forming alloys. <i>Materials at High Temperatures</i> , 2009 , 26, 211-216	1.1	5	
165	Comparison of Recuperator Alloy Degradation in Laboratory and Engine Testing. <i>Journal of Engineering for Gas Turbines and Power</i> , 2008 , 130,	1.7	4	
164	On the Loss of Protective Scale Formation in Creep-Resistant, Alumina-Forming Austenitic Stainless Steels at 900°C in Air. <i>Materials Science Forum</i> , 2008 , 595-598, 725-732	0.4	20	
163	Overview of Coating and Compatibility Research for Fusion Energy in the U.S <i>Materials Science Forum</i> , 2008 , 595-598, 549-558	0.4	13	
162	The Effect of Thermal Expansion on Spallation Behavior of Fe-Base Alumina-Forming Alloys. <i>Materials Science Forum</i> , 2008 , 595-598, 1083-1092	0.4	12	
161	Design strategies for new oxidation-resistant high temperature alloys 2008 , 398-432		2	
160	Transformation of Al2O3 to LiAlO2 in Pb¶7Li at 800℃. Journal of Nuclear Materials, 2008 , 376, 108-113	3.3	26	
159	Internal Oxidation Mitridation of Ferritic Fe(Al) Alloys in Air. Oxidation of Metals, 2008, 69, 211-231	1.6	10	
158	The development of alumina-forming austenitic stainless steels for high-temperature structural use. <i>Jom</i> , 2008 , 60, 12-18	2.1	97	

157	Effect of FeAl substrate mechanical properties on alumina scale morphology. <i>Materials Science</i> & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 497, 224-230	5.3	7
156	Formation of aluminide coatings on Fe-based alloys by chemical vapor deposition. <i>Surface and Coatings Technology</i> , 2008 , 202, 3839-3849	4.4	42
155	Interdiffusion behavior of Pt-diffused 🕒 🛭 coatings on Ni-based superalloys. <i>Surface and Coatings Technology</i> , 2008 , 203, 417-421	4.4	27
154	The effect of Pt content on IniPtAl coatings. Surface and Coatings Technology, 2008, 203, 413-416	4.4	38
153	Recent research and development for the dual-coolant blanket concept in the US. <i>Fusion Engineering and Design</i> , 2008 , 83, 920-927	1.7	66
152	The Performance of Pt-Modified Alumina-Forming Coatings and Model Alloys 2008,		6
151	Interdiffusional degradation of oxidation-resistant aluminide coatings on Fe-base alloys. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2007 , 58, 751-761	1.6	26
150	Comparison of the cyclic oxidation behavior of ENiAl, ENiPtAl and IniPtAl coatings on various superalloys. <i>Surface and Coatings Technology</i> , 2007 , 202, 730-734	4.4	74
149	Long-term performance of aluminide coatings on Fe-base alloys. <i>Surface and Coatings Technology</i> , 2007 , 202, 637-642	4.4	26
148	Synthesis and oxidation performance of Al-enriched []- [] coatings on Ni-based superalloys via secondary aluminizing. <i>Surface and Coatings Technology</i> , 2007 , 202, 632-636	4.4	27
147	Advanced alloys for compact, high-efficiency, high-temperature heat-exchangers. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 3622-3630	6.7	25
146	Critical questions in materials science and engineering for successful development of fusion power. Journal of Nuclear Materials, 2007 , 367-370, 1-10	3.3	62
145	Review of advances in development of vanadium alloys and MHD insulator coatings. <i>Journal of Nuclear Materials</i> , 2007 , 367-370, 780-787	3.3	80
144	Investigation of PbIIi compatibility issues for the dual coolant blanket concept. <i>Journal of Nuclear Materials</i> , 2007 , 367-370, 1150-1154	3.3	43
143	Compatibility of multi-layer, electrically insulating coatings for vanadium[Ithium blankets. <i>Journal of Nuclear Materials</i> , 2007 , 367-370, 1165-1169	3.3	18
142	Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels. <i>Scripta Materialia</i> , 2007 , 57, 1117-1120	5.6	102
141	Morphology, microstructure, and residual stress in EBPVD erbia coatings. <i>Journal of Materials Science</i> , 2007 , 42, 5722-5727	4.3	6
140	Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2007 , 38, 2737-2746	2.3	101

139	Creep-resistant, Al2O3-forming austenitic stainless steels. <i>Science</i> , 2007 , 316, 433-6	33.3	260
138	Compatibility Issues for a High Temperature Dual Coolant Blanket. <i>Fusion Science and Technology</i> , 2007 , 52, 829-833	1.1	8
137	Alumina-Forming Austenitic Alloys for Advanced Recuperators 2007,		3
136	Deformation and phase transformations during the cyclic oxidation of NiAl and NiPtAl. <i>Jom</i> , 2006 , 58, 47-52	2.1	22
135	Stainless Steels With Improved Oxidation Resistance for Recuperators. <i>Journal of Engineering for Gas Turbines and Power</i> , 2006 , 128, 370-376	1.7	29
134	Overview of Creep Strength and Oxidation of Heat-Resistant Alloy Sheets and Foils for Compact Heat Exchangers. <i>Journal of Turbomachinery</i> , 2006 , 128, 814-819	1.8	8
133	Comparison of Recuperator Alloy Degradation in Laboratory and Engine Testing 2006, 217		5
132	Oxidation resistance: One barrier to moving beyond Ni-base superalloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 415, 255-263	5.3	96
131	Liquid metal compatibility issues for test blanket modules. Fusion Engineering and Design, 2006, 81, 901	-90/8	42
130	The effect of water vapor on the oxidation behavior of NiPtAl coatings and alloys. <i>Surface and Coatings Technology</i> , 2006 , 201, 3852-3856	4.4	47
129	Synthesis and oxidation behavior of platinum-enriched HII bond coatings on Ni-based superalloys. <i>Surface and Coatings Technology</i> , 2006 , 201, 3857-3861	4.4	19
128	Creep and corrosion testing of aluminide coatings on ferritichartensitic substrates. <i>Surface and Coatings Technology</i> , 2006 , 201, 3880-3884	4.4	22
127	Comparison of Oxidation Behavior and Electrical Properties of Doped NiO- and Cr2O3-Forming Alloys for Solid-Oxide, Fuel-Cell Metallic Interconnects. <i>Oxidation of Metals</i> , 2006 , 65, 237-261	1.6	27
126	Chromium Volatilization Rates from Cr2O3 Scales into Flowing Gases Containing Water Vapor. <i>Oxidation of Metals</i> , 2006 , 66, 137-153	1.6	183
125	The Effect of Water Vapor on Cr Depletion in Advanced Recuperator Alloys 2005 , 927		14
124	Recent Progress Addressing Compatibility Issues Relevant to Fusion Environments. <i>Fusion Science and Technology</i> , 2005 , 47, 851-855	1.1	16
123	Overview of Creep Strength and Oxidation of Heat-Resistant Alloy Sheets and Foils for Compact Heat-Exchangers 2005 , 1011		5
122	Effect of nitrogen on the formation and oxidation behavior of iron aluminide coatings. <i>Surface and Coatings Technology</i> , 2005 , 200, 1231-1235	4.4	30

121	A platinum-enriched HI two-phase bond coat on Ni-based superalloys. <i>Surface and Coatings Technology</i> , 2005 , 200, 1259-1263	4.4	54
120	Possible Role of the Oxygen Potential Gradient in Enhancing Diffusion of Foreign Ions on 🖽 l2O3 Grain Boundaries. <i>Journal of the American Ceramic Society</i> , 2005 , 81, 305-314	3.8	69
119	The effect of carbon and reactive element dopants on oxidation lifetime of FeAl. <i>Scripta Materialia</i> , 2005 , 52, 1199-1204	5.6	29
118	Oxidation Behavior of ODS Fell Alloys. Oxidation of Metals, 2005, 63, 193-213	1.6	15
117	The Role of Oxygen Uptake and Scale Formation on the Embrittlement of Vanadium Alloys. <i>Oxidation of Metals</i> , 2005 , 63, 33-55	1.6	18
116	Evaluation and Characterization of Iron- and Nickel-Based Alloys for Microturbine Recuperators 2005 , 945		5
115	Bond coating issues in thermal barrier coatings for industrial gas turbines. <i>Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy</i> , 2005 , 219, 101-107	1.6	16
114	Comment on D xidation of alloys containing aluminum and diffusion in Al2O3[J. Appl. Phys. 95, 3217 (2004)]. <i>Journal of Applied Physics</i> , 2005 , 97, 116111	2.5	9
113	Oxidation-Sulfidation Behavior of Multiphase Mo-Si-B Alloys. <i>Materials Science Forum</i> , 2004 , 461-464, 1063-1072	0.4	4
112	The Oxidation Behavior of Fe-Al Alloys. <i>Materials Science Forum</i> , 2004 , 461-464, 799-806	0.4	28
111	Comparison of thermal expansion and oxidation behavior of various high-temperature coating materials and superalloys. <i>Materials at High Temperatures</i> , 2004 , 21, 87-94	1.1	82
110	Characterization of the breakaway al content in alumina-forming alloys. <i>Materials at High Temperatures</i> , 2004 , 21, 175-185	1.1	25
109	Austenitic Stainless Steels and Alloys With Improved High-Temperature Performance for Advanced Microturbine Recuperators 2004 , 131		7
108	The Use of Model Alloys to Develop Corrosion-Resistant Stainless Steels. <i>Materials Science Forum</i> , 2004 , 461-464, 815-822	0.4	43
107	The Oxidation Behavior of Y2O3-Dispersed ENiAl. Oxidation of Metals, 2004, 61, 273-292	1.6	42
106	Effect of Cr and Ni Contents on the Oxidation Behavior of Ferritic and Austenitic Model Alloys in Air with Water Vapor. <i>Oxidation of Metals</i> , 2004 , 61, 463-483	1.6	119
105	The Effect of Water Vapor on the Oxidation Behavior of CVD Iron-Aluminide Coatings. <i>Oxidation of Metals</i> , 2004 , 62, 103-120	1.6	26
104	Effect of cycle length on the oxidation performance of iron aluminide coatings. <i>Surface and Coatings Technology</i> , 2004 , 188-189, 35-40	4.4	57

(2002-2004)

103	The role of chemical composition on the oxidation performance of aluminide coatings. <i>Surface and Coatings Technology</i> , 2004 , 188-189, 71-78	4.4	98
102	High-temperature diffusion barriers for protective coatings. <i>Surface and Coatings Technology</i> , 2004 , 188-189, 153-157	4.4	59
101	Recent progress in the development of electrically insulating coatings for a liquid lithium blanket. <i>Journal of Nuclear Materials</i> , 2004 , 329-333, 119-124	3.3	83
100	Influence of Aluminum Depletion Effects on the Calculation of the Oxidation Lifetimes of FeCrAl Alloys. <i>Materials Science Forum</i> , 2004 , 461-464, 579-590	0.4	17
99	Screening and Evaluation of Materials for Microturbine Recuperators 2004 , 145		10
98	Stainless Steels With Improved Oxidation Resistance for Recuperators 2004,		4
97	The use of two reactive elements to optimize oxidation performance of alumina-forming alloys. <i>Materials at High Temperatures</i> , 2003 , 20, 375-386	1.1	56
96	Growth stress Imicrostructure relationships for alumina scales. <i>Materials at High Temperatures</i> , 2003 , 20, 303-310	1.1	3
95	Factors Affecting Corrosion Resistance of Recuperator Alloys 2003 , 755		5
94	Selection, Development and Testing of Stainless Steels and Alloys for High-Temperature Recuperator Applications 2003 , 763		9
93	High Temperature Compatibility Issues for Fusion Reactor Structural Materials. <i>Fusion Science and Technology</i> , 2003 , 44, 433-440	1.1	6
93		1.1	93
	Technology, 2003, 44, 433-440 Effect of Quaternary Additions on the Oxidation Behavior of Hf-Doped NiAl. Oxidation of Metals,		
92	Technology, 2003, 44, 433-440 Effect of Quaternary Additions on the Oxidation Behavior of Hf-Doped NiAl. Oxidation of Metals, 2003, 59, 257-283 Corrosion behaviour of AlN for self-cooled Li/V blanket application. Fusion Engineering and Design,	1.6	93
92 91	Technology, 2003, 44, 433-440 Effect of Quaternary Additions on the Oxidation Behavior of Hf-Doped NiAl. Oxidation of Metals, 2003, 59, 257-283 Corrosion behaviour of AlN for self-cooled Li/V blanket application. Fusion Engineering and Design, 2003, 69, 397-401 Optimization of Reactive-Element Additions to Improve Oxidation Performance of	1.6	93
92 91 90	Effect of Quaternary Additions on the Oxidation Behavior of Hf-Doped NiAl. <i>Oxidation of Metals</i> , 2003, 59, 257-283 Corrosion behaviour of AlN for self-cooled Li/V blanket application. <i>Fusion Engineering and Design</i> , 2003, 69, 397-401 Optimization of Reactive-Element Additions to Improve Oxidation Performance of Alumina-Forming Alloys. <i>Journal of the American Ceramic Society</i> , 2003, 86, 686-95 Martensitic transformation in CVD NiAl and (Ni,Pt)Al bond coatings. <i>Surface and Coatings</i>	1.6 1.7 3.8	93 22 182
92 91 90 89	Effect of Quaternary Additions on the Oxidation Behavior of Hf-Doped NiAl. Oxidation of Metals, 2003, 59, 257-283 Corrosion behaviour of AlN for self-cooled Li/V blanket application. Fusion Engineering and Design, 2003, 69, 397-401 Optimization of Reactive-Element Additions to Improve Oxidation Performance of Alumina-Forming Alloys. Journal of the American Ceramic Society, 2003, 86, 686-95 Martensitic transformation in CVD NiAl and (Ni,Pt)Al bond coatings. Surface and Coatings Technology, 2003, 163-164, 19-24 Growth stress [microstructure relationships for alumina scales. Materials at High Temperatures,	1.6 1.7 3.8 4.4	93 22 182

85	Temperature limits on the compatibility of insulating ceramics in lithium. <i>Journal of Nuclear Materials</i> , 2002 , 307-311, 1344-1350	3.3	26
84	Effect of Cycle Frequency on High-Temperature Oxidation Behavior of Alumina-Forming Alloys. <i>Oxidation of Metals</i> , 2002 , 58, 73-101	1.6	62
83	Influence of Sulfur, Platinum, and Hafnium on the Oxidation Behavior of CVD NiAl Bond Coatings. <i>Oxidation of Metals</i> , 2002 , 58, 513-544	1.6	158
82	Test Facility for Screening and Evaluating Candidate Materials for Advanced Microturbine Recuperators 2002 , 1135		5
81	The Effect of Water Vapor on Oxidation Performance of Alloys Used in Recuperators 2002, 1045		10
80	Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2001 , 32, 1727-1741	2.3	111
79	Characterization of commercial EB-PVD TBC systems with CVD (Ni,Pt)Al bond coatings. <i>Surface and Coatings Technology</i> , 2001 , 146-147, 140-146	4.4	52
78	Long-term stability of ceramics in liquid lithium. <i>Journal of Nuclear Materials</i> , 2001 , 289, 52-56	3.3	18
77	High-Temperature Oxidation Behavior of ODSEe3Al. Oxidation of Metals, 2001, 55, 333-357	1.6	48
76	Analytical Electron-Microscopy Study of the Breakdown of ⊞Al2O3 Scales Formed on Oxide Dispersion-Strengthened Alloys. <i>Oxidation of Metals</i> , 2001 , 56, 119-145	1.6	35
75	Materials Selection for High Temperature (750°11000°1°C) Metallic Recuperators for Improved Efficiency Microturbines 2001 ,		10
74	Optimizing the Imperfect Oxidation Performance of Iron Aluminides. <i>Materials Science Forum</i> , 2001 , 369-372, 411-418	0.4	30
73	Optimizing Scale Adhesion on Single Crystal Superalloys. <i>Materials Science Forum</i> , 2001 , 369-372, 459-4	66 .4	44
72	Oxide Defects and Damage Processes in Iron-Based Alumina-Formers. <i>Materials Science Forum</i> , 2001 , 369-372, 337-344	0.4	3
71	Effects of Platinum Additions on the Adherence of Alumina Scales to CVD Aluminide Bond Coatings. <i>Materials Science Forum</i> , 2001 , 369-372, 679-686	0.4	17
70	Hot Corrosion of Nickel-Base Alloys by Alkali-Containing Sulfate Deposits. <i>Materials Science Forum</i> , 2001 , 369-372, 571-578	0.4	6
69	Effect of environment on the oxidation of ingot-processed iron aluminides. <i>Intermetallics</i> , 2001 , 9, 735-	7 <u>3</u> .9	19
68	Evaluation of iron-aluminide CVD coatings for high temperature corrosion protection. <i>Materials at High Temperatures</i> , 2001 , 18, 185-192	1.1	37

(1998-2000)

67	An Analysis of the Potential for Deposition, Erosion, or Corrosion in Gas Turbines Fueled by the Products of Biomass Gasification or Combustion 2000 ,		4
66	Effects of oxygen and hydrogen at low pressure on the mechanical properties of Varaii alloys. Journal of Nuclear Materials, 2000 , 283-287, 841-845	3.3	25
65	A microstructural study of the oxide scale formation on ODS Fell3Cr steel. <i>Journal of Nuclear Materials</i> , 2000 , 283-287, 1306-1310	3.3	38
64	Effect of composition on the oxidation and hot corrosion resistance of NiAl doped with precious metals. <i>Surface and Coatings Technology</i> , 2000 , 133-134, 15-22	4.4	104
63	Oxidation of refractory metals in air and low pressure oxygen gas. <i>International Journal of Refractory Metals and Hard Materials</i> , 2000 , 18, 237-243	4.1	51
62	Hot Corrosion of an EB-PVD Thermal-Barrier Coating System at 950°C. <i>Oxidation of Metals</i> , 2000 , 54, 401-424	1.6	36
61	Effect of Experimental Procedures on the Cyclic, Hot-Corrosion Behavior of NiCoCrAlY-Type Bondcoat Alloys. <i>Oxidation of Metals</i> , 2000 , 54, 255-276	1.6	15
60	Evaluation of thermal barrier coating systems on novel substrates. <i>Journal of Thermal Spray Technology</i> , 2000 , 9, 198-203	2.5	25
59	Characterization of thermally cycled alumina scales. <i>Materials at High Temperatures</i> , 2000 , 17, 165-171	1.1	25
58	Compositional Effects on Aluminide Oxidation Performance: Objectives for Improved Bond Coats 2000 ,		11
57	Oxidation behavior of platinum luminum alloys and the effect of Zr doping. <i>Journal of Materials Research</i> , 1999 , 14, 4531-4540	2.5	15
56	Microstructure of thermally grown and deposited alumina films probed with positrons. <i>Physical Review B</i> , 1999 , 59, 6675-6688	3.3	7
55	Influence of electron beam physical vapor deposited thermal barrier coating microstructure on thermal barrier coating system performance under cyclic oxidation conditions. <i>Surface and Coatings Technology</i> , 1999 , 120-121, 68-76	4.4	58
54	The Effect of an Oxide Dispersion on the Critical Al Content in Fe-Al Alloys. <i>Oxidation of Metals</i> , 1999 , 51, 181-197	1.6	55
53	Engineering the Interfacial Chemistry in Metal/Oxide Systems. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 586, 133		
52	Enhancing Oxidation Performance by Control of Interfacial Segregation and Microstructural Design. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 586, 301		
51	Long-term oxidation performance of ingot-produced Fe3Al alloys. <i>Materials at High Temperatures</i> , 1999 , 16, 1-13	1.1	14
50	The Oxidation Behavior of Oxide-Dispersed ENiAl: I. Short-Term Performance at 1200°C. Oxidation of Metals, 1998 , 49, 531-559	1.6	84

49	Effects of sulfur impurity on the scale adhesion behavior of a desulfurized Ni-based superalloy aluminized by chemical vapor deposition. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1998 , 29, 833-841	2.3	72
48	Substrate and bond coat compositions: factors affecting alumina scale adhesion. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1998 , 245, 201-211	5.3	297
47	Grain Boundary Segregation of Cation Dopants in ∄ Al2 O 3 Scales. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 1819-1829	3.9	87
46	An Oxygen Potential Gradient as a Possible Diffusion Driving Force. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 527, 497		2
45	Microdefects in Al2O3 films and interfaces revealed by positron lifetime spectroscopy. <i>Applied Physics Letters</i> , 1997 , 71, 3165-3167	3.4	11
44	High-Temperature Oxidation Life Characteristics of ODS-Fe3Al. <i>Materials Science Forum</i> , 1997 , 251-254, 195-202	0.4	8
43	Study of the Reactive Element Effect in ODS Iron-Base Alumina Formers. <i>Materials Science Forum</i> , 1997 , 251-254, 397-404	0.4	20
42	Characterization of the high temperature oxidation of TBC-coated oxide-dispersed ENiAl substrates. <i>Materials at High Temperatures</i> , 1997 , 14, 403-412	1.1	10
41	Interfacial Segregation in Oxide Scales on Nicrai-Based Alloys. <i>Microscopy and Microanalysis</i> , 1997 , 3, 785-786	0.5	
40	On the formation of interfacial and internal voids in Al2O3 scales. Oxidation of Metals, 1997, 48, 303-32	8 1.6	134
39	The effect of various oxide dispersions on the phase composition and morphology of Al2O3 scales grown on ENiAl. <i>Oxidation of Metals</i> , 1997 , 47, 1-20	1.6	136
38	The Oxidation behavior of ODS iron aluminides. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 1996 , 47, 663-674	1.6	33
37	Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. <i>Oxidation of Metals</i> , 1996 , 45, 1-37	1.6	664
36	The oxidation mechanism of FAl2O3 scales. <i>Solid State Ionics</i> , 1995 , 78, 99-107	3.3	168
35	The reactive element effect in commercial ODS FeCrAI alloys. <i>Materials at High Temperatures</i> , 1995 , 13, 3-16	1.1	127
34	Limitations on the Use of Ion Implantation for the Study of the Reactive Element Effect in Ill NiAl. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 2443-2453	3.9	66
33	Limitations on the Use of Surface Doping for Improving High-Temperature Oxidation Resistance. <i>MRS Bulletin</i> , 1994 , 19, 26-30	3.2	27
32	The formation of <code>Al2O3</code> scales at 1500°C. Oxidation of Metals, 1994 , 41, 203-233	1.6	45

31	The Effect of Various Oxide Dispersions on the Oxidation Resistance of Fe3Al. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 364, 1315	4
30	The Cyclic Oxidation Behavior of Oxide-Dispersed ENIAl. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 364, 987	6
29	The effect of reactive elements on the segregation behavior and microstructure of EAl2O3 scales on ENiAl. <i>Proceedings Annual Meeting Electron Microscopy Society of America</i> , 1994 , 52, 670-671	
28	18O/SIMS characterization of the growth mechanism of doped and undoped #Al2O3. <i>Oxidation of Metals</i> , 1993 , 39, 167-195	200
27	The effect of time and temperature on the segregation of foreign ions to grain boundaries in growing EAl2O3 scales. <i>Proceedings Annual Meeting Electron Microscopy Society of America</i> , 1993 , 51, 950-951	1
26	Characterization of the oxidation-sulfidation of a preoxidized ODS FeCrAl alloy. <i>Proceedings Annual Meeting Electron Microscopy Society of America</i> , 1993 , 51, 1146-1147	1
25	The effect of Y and Ti on FeCrAl oxidation at 1400 LC. European Physical Journal Special Topics, 1993 , 03, C9-247-C9-255	4
24	The Effect of Yttrium Ion Implantation on the High Temperature Oxidation Properties of NiAl. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 213, 981	12
23	Segregation of Y to Grain Boundaries in the Al2 O 3 Scale Formed on an ODS Alloy. <i>Journal of the Electrochemical Society</i> , 1987 , 134, 3207-3208	79
22	The Oxidation Behaviour of ODS Iron Aluminides183-202	4
21	High-Temperature Oxidation and Corrosion of Intermetallics229-325	7
20	Effect of environment on the scale formed on oxide dispersion strengthened FeCrAl at 1050LC and 1100LC	1
19	Ionic segregation on grain boundaries in thermally grown alumina scales	1
18	Steam Oxidation, Burst and Critical Heat Flux Testing of FeCrAl Cladding in the Severe Accident Test Station	2
17	Purification of Chloride Salts for Concentrated Solar Applications	2
16	Lifetime Model Development for Supercritical CO2 CSP Systems	3
15	Methodologies for Evaluation of Corrosion Protection for Ductile Iron Pipe	5
14	Report on Exploration of New FeCrAl Heat Variants with Improved Properties	4

13	Evaluation of iron-aluminide CVD coatings for high temperature corrosion protection		20
12	The use of two reactive elements to optimize oxidation performance of alumina-forming alloys		13
11	Characterization of the breakaway al content in alumina-forming alloys		5
10	Comparison of thermal expansion and oxidation behavior of various high-temperature coating materials and superalloys		16
9	Long-term oxidation performance of ingot-produced Fe3Al alloys		9
8	The Role of Oxidation Resistance in High Temperature Alloy Selection for a Future with Green Hydrogen. <i>Jom</i> ,1	2.1	O
7	Characterization of Commercial EB-PVD TBC Systems with CVD (Ni,Pt)Al Bond Coatings29-44		
6	Compatibility of FeCrAlMo in Flowing Pb-Li at 600°C to 700°C. Fusion Science and Technology,1-5	1.1	2
5	Lessons Learned in Employing Data Analytics to Predict Oxidation Kinetics and Spallation Behavior of High-Temperature NiCr-Based Alloys. <i>Oxidation of Metals</i> ,1	1.6	О
4	Evaluating steam oxidation kinetics of environmental barrier coatings. <i>Journal of the American Ceramic Society</i> ,	3.8	1
3	Oxidation of Superalloys in Extreme Environments859-875		4
2	Effect of Microstucture and Environment on the High-Temperature Oxidation Behavior of Alloy 718Pl	us977-	991
1	High-Temperature Oxidation and Corrosion of Intermetallics		1