Lior S Pachter

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6781046/lior-s-pachter-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66,331 56 194 224 h-index g-index citations papers 8.01 81,759 224 13.1 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
194	A Python library for probabilistic analysis of single-cell omics data <i>Nature Biotechnology</i> , 2022 , 40, 163	-14 646 5	9
193	Museum of spatial transcriptomics Nature Methods, 2022,	21.6	13
192	Whole-animal multiplexed single-cell RNA-seq reveals transcriptional shifts across medusa cell types. <i>Science Advances</i> , 2021 , 7, eabh1683	14.3	6
191	A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. <i>Nature</i> , 2021 , 598, 103-	150.4	23
190	Isoform cell-type specificity in the mouse primary motor cortex. <i>Nature</i> , 2021 , 598, 195-199	50.4	5
189	A multimodal cell census and atlas of the mammalian primary motor cortex. <i>Nature</i> , 2021 , 598, 86-102	50.4	44
188	Swab-Seq: A high-throughput platform for massively scaled up SARS-CoV-2 testing 2021 ,		28
187	Modular, efficient and constant-memory single-cell RNA-seq preprocessing. <i>Nature Biotechnology</i> , 2021 , 39, 813-818	44.5	53
186	BUTTERFLY: addressing the pooled amplification paradox with unique molecular identifiers in single-cell RNA-seq. <i>Genome Biology</i> , 2021 , 22, 174	18.3	1
185	Massively scaled-up testing for SARS-CoV-2 RNA via next-generation sequencing of pooled and barcoded nasal and saliva samples. <i>Nature Biomedical Engineering</i> , 2021 , 5, 657-665	19	14
184	Normalization of single-cell RNA-seq counts by $\log(x + 1)$ * or $\log(1 + x)$. Bioinformatics, 2021 ,	7.2	4
183	SWALO: scaffolding with assembly likelihood optimization. <i>Nucleic Acids Research</i> , 2021 , 49, e117	20.1	О
182	Low-cost, scalable, and automated fluid sampling for fluidics applications. <i>HardwareX</i> , 2021 , 10, e00201	2.7	2
181	RefShannon: A genome-guided transcriptome assembler using sparse flow decomposition. <i>PLoS ONE</i> , 2020 , 15, e0232946	3.7	6
180	Interpretable factor models of single-cell RNA-seq via variational autoencoders. <i>Bioinformatics</i> , 2020 , 36, 3418-3421	7.2	37
179	Protein velocity and acceleration from single-cell multiomics experiments. <i>Genome Biology</i> , 2020 , 21, 39	18.3	19
178	Reference-free Association Mapping from Sequencing Reads Using k-mers. <i>Bio-protocol</i> , 2020 , 10, e381	5 0.9	2

(2018-2020)

177	Odd-paired is a pioneer-like factor that coordinates with Zelda to control gene expression in embryos. <i>ELife</i> , 2020 , 9,	8.9	10
176	Highly multiplexed single-cell RNA-seq by DNA oligonucleotide tagging of cellular proteins. <i>Nature Biotechnology</i> , 2020 , 38, 35-38	44.5	35
175	A curated database reveals trends in single-cell transcriptomics. <i>Database: the Journal of Biological Databases and Curation</i> , 2020 , 2020,	5	56
174	Special function methods for bursty models of transcription. <i>Physical Review E</i> , 2020 , 102, 022409	2.4	8
173	Reliable and accurate diagnostics from highly multiplexed sequencing assays. <i>Scientific Reports</i> , 2020 , 10, 21759	4.9	5
172	Principles of open source bioinstrumentation applied to the poseidon syringe pump system. <i>Scientific Reports</i> , 2019 , 9, 12385	4.9	24
171	A discriminative learning approach to differential expression analysis for single-cell RNA-seq. <i>Nature Methods</i> , 2019 , 16, 163-166	21.6	53
170	Deterministic column subset selection for single-cell RNA-Seq. <i>PLoS ONE</i> , 2019 , 14, e0210571	3.7	
169	Barcode identification for single cell genomics. <i>BMC Bioinformatics</i> , 2019 , 20, 32	3.6	11
168	Transcript Abundance Estimation and the Laminar Packing Problem. <i>Lecture Notes in Computer Science</i> , 2019 , 203-211	0.9	
167	Factor analysis for survival time prediction with informative censoring and diverse covariates. <i>Statistics in Medicine</i> , 2019 , 38, 3719-3732	2.3	1
166	The barcode, UMI, set format and BUStools. <i>Bioinformatics</i> , 2019 , 35, 4472-4473	7.2	54
165	Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior. <i>Cell</i> , 2019 , 179, 713-728.e17	56.2	84
164	Gene-level differential analysis at transcript-level resolution. <i>Genome Biology</i> , 2018 , 19, 53	18.3	57
163	Expression reflects population structure. <i>PLoS Genetics</i> , 2018 , 14, e1007841	6	9
162	RNA Velocity: Molecular Kinetics from Single-Cell RNA-Seq. <i>Molecular Cell</i> , 2018 , 72, 7-9	17.6	30
161	Accurate design of translational output by a neural network model of ribosome distribution. <i>Nature Structural and Molecular Biology</i> , 2018 , 25, 577-582	17.6	35
160	Association mapping from sequencing reads using -mers. <i>ELife</i> , 2018 , 7,	8.9	48

159	PROBer Provides a General Toolkit for Analyzing Sequencing-Based Toeprinting Assays. <i>Cell Systems</i> , 2017 , 4, 568-574.e7	10.6	13
158	Zika infection of neural progenitor cells perturbs transcription in neurodevelopmental pathways. <i>PLoS ONE</i> , 2017 , 12, e0175744	3.7	4
157	Differential analysis of RNA-seq incorporating quantification uncertainty. <i>Nature Methods</i> , 2017 , 14, 687-690	21.6	706
156	Pregnancy-induced gene expression changes in vivo among women with rheumatoid arthritis: a pilot study. <i>Arthritis Research and Therapy</i> , 2017 , 19, 104	5.7	6
155	Single-cell analysis at the threshold. <i>Nature Biotechnology</i> , 2016 , 34, 1111-1118	44.5	55
154	The Lair: a resource for exploratory analysis of published RNA-Seq data. <i>BMC Bioinformatics</i> , 2016 , 17, 490	3.6	10
153	Estimating intrinsic and extrinsic noise from single-cell gene expression measurements. <i>Statistical Applications in Genetics and Molecular Biology</i> , 2016 , 15, 447-471	1.2	17
152	Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts. <i>Genome Biology</i> , 2016 , 17, 112	18.3	76
151	A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. <i>Nucleic Acids Research</i> , 2016 , 44, 838-51	20.1	111
150	Near-optimal probabilistic RNA-seq quantification. <i>Nature Biotechnology</i> , 2016 , 34, 525-7	44.5	3742
150 149	Near-optimal probabilistic RNA-seq quantification. <i>Nature Biotechnology</i> , 2016 , 34, 525-7 Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity. <i>Genomics</i> , 2016 , 108, 158-167	44.5	374 ² 9
	Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity. <i>Genomics</i> ,		
149	Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity. <i>Genomics</i> , 2016 , 108, 158-167 The NIH BD2K center for big data in translational genomics. <i>Journal of the American Medical</i>	4.3	9
149	Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity. <i>Genomics</i> , 2016 , 108, 158-167 The NIH BD2K center for big data in translational genomics. <i>Journal of the American Medical Informatics Association: JAMIA</i> , 2015 , 22, 1143-7 Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. <i>New England</i>	4.3	9
149 148 147	Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity. <i>Genomics</i> , 2016 , 108, 158-167 The NIH BD2K center for big data in translational genomics. <i>Journal of the American Medical Informatics Association: JAMIA</i> , 2015 , 22, 1143-7 Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. <i>New England Journal of Medicine</i> , 2015 , 372, 2481-98	4·3 8.6 59·2	9
149 148 147	Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity. <i>Genomics</i> , 2016 , 108, 158-167 The NIH BD2K center for big data in translational genomics. <i>Journal of the American Medical Informatics Association: JAMIA</i> , 2015 , 22, 1143-7 Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. <i>New England Journal of Medicine</i> , 2015 , 372, 2481-98 Controlling for conservation in genome-wide DNA methylation studies. <i>BMC Genomics</i> , 2015 , 16, 420 Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. <i>Science</i> ,	4·3 8.6 59·2 4·5	9 24 1828 4 139
149 148 147 146	Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity. <i>Genomics</i> , 2016 , 108, 158-167 The NIH BD2K center for big data in translational genomics. <i>Journal of the American Medical Informatics Association: JAMIA</i> , 2015 , 22, 1143-7 Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. <i>New England Journal of Medicine</i> , 2015 , 372, 2481-98 Controlling for conservation in genome-wide DNA methylation studies. <i>BMC Genomics</i> , 2015 , 16, 420 Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. <i>Science</i> , 2015 , 350, 1251-5 A diverse epigenetic landscape at human exons with implication for expression. <i>Nucleic Acids</i>	4·3 8.6 59·2 4·5 33·3	9 24 1828 4 139

(2011-2014)

141	Rational experiment design for sequencing-based RNA structure mapping. <i>Rna</i> , 2014 , 20, 1864-77	5.8	24
140	Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells. <i>Stem Cell Reports</i> , 2014 , 2, 838-52	8	72
139	Structural variation among wild and industrial strains of Penicillium chrysogenum. <i>PLoS ONE</i> , 2014 , 9, e96784	3.7	2
138	A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis. <i>Nucleic Acids Research</i> , 2014 , 42, 4031-42	20.1	65
137	CGAL: computing genome assembly likelihoods. <i>Genome Biology</i> , 2013 , 14, R8	18.3	59
136	Affine and Projective Tree Metric Theorems. <i>Annals of Combinatorics</i> , 2013 , 17, 205-228	0.7	4
135	Fragment assignment in the cloud with eXpress-D. BMC Bioinformatics, 2013, 14, 358	3.6	18
134	Differential analysis of gene regulation at transcript resolution with RNA-seq. <i>Nature Biotechnology</i> , 2013 , 31, 46-53	44.5	2465
133	Streaming fragment assignment for real-time analysis of sequencing experiments. <i>Nature Methods</i> , 2013 , 10, 71-3	21.6	649
132	Updating RNA-Seq analyses after re-annotation. <i>Bioinformatics</i> , 2013 , 29, 1631-7	7.2	18
131	Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. <i>Nature Protocols</i> , 2012 , 7, 562-78	18.8	8342
130	Quantifying uniformity of mapped reads. <i>Bioinformatics</i> , 2012 , 28, 2680-2	7.2	5
129	SHAPE-Seq: High-Throughput RNA Structure Analysis. <i>Current Protocols in Chemical Biology</i> , 2012 , 4, 275-97	1.8	58
128	Identification of novel transcripts in annotated genomes using RNA-Seq. <i>Bioinformatics</i> , 2011 , 27, 2325	- 9 7.2	716
127	Improving RNA-Seq expression estimates by correcting for fragment bias. <i>Genome Biology</i> , 2011 , 12, R22	18.3	804
126	Identification and correction of systematic error in high-throughput sequence data. <i>Nature Precedings</i> , 2011 ,		1
125	Identification and correction of systematic error in high-throughput sequence data. <i>BMC Bioinformatics</i> , 2011 , 12, 451	3.6	173
124	Shape-based peak identification for ChIP-Seq. <i>BMC Bioinformatics</i> , 2011 , 12, 15	3.6	38

123	RNA-Seq and find: entering the RNA deep field. <i>Genome Medicine</i> , 2011 , 3, 74	14.4	18
122	Tracing the most parsimonious indel history. <i>Journal of Computational Biology</i> , 2011 , 18, 967-86	1.7	2
121	Multiplexed RNA structure characterization with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 11063-8	11.5	280
120	Determining coding CpG islands by identifying regions significant for pattern statistics on Markov chains. <i>Statistical Applications in Genetics and Molecular Biology</i> , 2011 , 10,	1.2	O
119	The neighbor-net algorithm. Advances in Applied Mathematics, 2011, 47, 240-258	0.8	14
118	Modeling and automation of sequencing-based characterization of RNA structure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 11069-74	11.5	95
117	Phyloepigenomic comparison of great apes reveals a correlation between somatic and germline methylation states. <i>Genome Research</i> , 2011 , 21, 2049-57	9.7	32
116	RNA structure characterization from chemical mapping experiments 2011 ,		29
115	Exploring the genetic basis of variation in gene predictions with a synthetic association study. <i>PLoS ONE</i> , 2010 , 5, e11645	3.7	
114	Exon-level microarray analyses identify alternative splicing programs in breast cancer. <i>Molecular Cancer Research</i> , 2010 , 8, 961-74	6.6	101
113	Development of a low bias method for characterizing viral populations using next generation sequencing technology. <i>PLoS ONE</i> , 2010 , 5, e13564	3.7	45
112	Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. <i>PLoS Biology</i> , 2010 , 8, e1000343	9.7	154
111	MetMap enables genome-scale Methyltyping for determining methylation states in populations. <i>PLoS Computational Biology</i> , 2010 , 6, e1000888	5	9
110	Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. <i>Nature Biotechnology</i> , 2010 , 28, 511-5	44.5	10225
109	Coverage statistics for sequence census methods. <i>BMC Bioinformatics</i> , 2010 , 11, 430	3.6	9
108	Disordered microbial communities in asthmatic airways. <i>PLoS ONE</i> , 2010 , 5, e8578	3.7	1085
107	Fast statistical alignment. PLoS Computational Biology, 2009, 5, e1000392	5	252
106	Why Neighbor-Joining Works. <i>Algorithmica</i> , 2009 , 54, 1-24	0.9	59

(2007-2009)

105	TopHat: discovering splice junctions with RNA-Seq. <i>Bioinformatics</i> , 2009 , 25, 1105-11	7.2	9121
104	Convex Rank Tests and Semigraphoids. SIAM Journal on Discrete Mathematics, 2009, 23, 1117-1134	0.7	38
103	On the optimality of the neighbor-joining algorithm. Algorithms for Molecular Biology, 2008, 3, 5	1.8	25
102	Combining statistical alignment and phylogenetic footprinting to detect regulatory elements. <i>Bioinformatics</i> , 2008 , 24, 1236-42	7.2	25
101	Combinatorics of least-squares trees. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 13206-11	11.5	10
100	Specific alignment of structured RNA: stochastic grammars and sequence annealing. <i>Bioinformatics</i> , 2008 , 24, 2677-83	7.2	31
99	Viral population estimation using pyrosequencing. PLoS Computational Biology, 2008, 4, e1000074	5	174
98	Comparison of pattern detection methods in microarray time series of the segmentation clock. <i>PLoS ONE</i> , 2008 , 3, e2856	3.7	32
97	Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome. <i>Genome Research</i> , 2007 , 17, 760-74	9.7	163
96	Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. <i>Nature</i> , 2007 , 447, 799-816	50.4	4121
95	Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. <i>Nature</i> , 2007 , 450, 219-32	50.4	506
94	Evolution of genes and genomes on the Drosophila phylogeny. <i>Nature</i> , 2007 , 450, 203-18	50.4	1586
93	Analysis of epistatic interactions and fitness landscapes using a new geometric approach. <i>BMC Evolutionary Biology</i> , 2007 , 7, 60	3	47
92	Toward the human genotope. Bulletin of Mathematical Biology, 2007, 69, 2723-35	2.1	18
91	Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. <i>PLoS Biology</i> , 2007 , 5, e310	9.7	479
90	The Mathematics of Phylogenomics. <i>SIAM Review</i> , 2007 , 49, 3-31	7.4	25
89	The cyclohedron test for finding periodic genes in time course expression studies. <i>Statistical Applications in Genetics and Molecular Biology</i> , 2007 , 6, Article 21	1.2	7
88	Multiple alignment by sequence annealing. <i>Bioinformatics</i> , 2007 , 23, e24-9	7.2	60

87	Optimization of air vehicles operations using mixed-integer linear programming. <i>Journal of the Operational Research Society</i> , 2007 , 58, 516-527	2	36
86	Patterns of gene duplication and intron loss in the ENCODE regions suggest a confounding factor. <i>Genomics</i> , 2007 , 90, 44-8	4.3	3
85	A genome-wide map of conserved microRNA targets in C. elegans. Current Biology, 2006, 16, 460-71	6.3	353
84	Evolution at the nucleotide level: the problem of multiple whole-genome alignment. <i>Human Molecular Genetics</i> , 2006 , 15 Spec No 1, R51-6	5.6	41
83	Parametric alignment of Drosophila genomes. PLoS Computational Biology, 2006, 2, e73	5	28
82	Beyond pairwise distances: neighbor-joining with phylogenetic diversity estimates. <i>Molecular Biology and Evolution</i> , 2006 , 23, 491-8	8.3	19
81	Reference based annotation with GeneMapper. <i>Genome Biology</i> , 2006 , 7, R29	18.3	50
80	Identification of transposable elements using multiple alignments of related genomes. <i>Genome Research</i> , 2006 , 16, 260-70	9.7	38
79	Phylogenetic Profiling of Insertions and Deletions in Vertebrate Genomes. <i>Lecture Notes in Computer Science</i> , 2006 , 265-280	0.9	7
78	Pair hidden Markov models 2005 ,		2
77	Computation 2005 , 43-84		1
76	Bioinformatics for whole-genome shotgun sequencing of microbial communities. <i>PLoS Computational Biology</i> , 2005 , 1, 106-12	5	221
75	Subtree power analysis and species selection for comparative genomics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 7900-5	11.5	15
74	Large multiple organism gene finding by collapsed Gibbs sampling. <i>Journal of Computational Biology</i> , 2005 , 12, 599-608	1.7	6
73	Multiple organism gene finding by collapsed gibbs sampling 2004 ,		1
7 ²	Intraspecies sequence comparisons for annotating genomes. <i>Genome Research</i> , 2004 , 14, 2406-11	9.7	42
71	MAVID: constrained ancestral alignment of multiple sequences. <i>Genome Research</i> , 2004 , 14, 693-9	9.7	209
70	Parametric inference for biological sequence analysis. <i>Proceedings of the National Academy of</i>	11.5	40

(2003-2004)

69	Visualization of multiple genome annotations and alignments with the K-BROWSER. <i>Genome Research</i> , 2004 , 14, 716-20	9.7	14
68	Tropical geometry of statistical models. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 16132-7	11.5	60
67	Identification of evolutionary hotspots in the rodent genomes. Genome Research, 2004, 14, 574-9	9.7	17
66	Multiple-sequence functional annotation and the generalized hidden Markov phylogeny. <i>Bioinformatics</i> , 2004 , 20, 1850-60	7.2	37
65	Accurate identification of novel human genes through simultaneous gene prediction in human, mouse, and rat. <i>Genome Research</i> , 2004 , 14, 661-4	9.7	25
64	Genome sequence of the Brown Norway rat yields insights into mammalian evolution. <i>Nature</i> , 2004 , 428, 493-521	50.4	1689
63	Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. <i>Nature</i> , 2004 , 432, 695-716	50.4	2143
62	Reconstructing trees from subtree weights. <i>Applied Mathematics Letters</i> , 2004 , 17, 615-621	3.5	37
61	Constrained Optimization for UAV Task Assignment 2004,		37
60	UAV Task Assignment with Timing Constraints via Mixed-Integer Linear Programming 2004,		30
60 59	UAV Task Assignment with Timing Constraints via Mixed-Integer Linear Programming 2004 , VISTA: computational tools for comparative genomics. <i>Nucleic Acids Research</i> , 2004 , 32, W273-9	20.1	
		20.1	
59	VISTA: computational tools for comparative genomics. <i>Nucleic Acids Research</i> , 2004 , 32, W273-9		1441
59 58	VISTA: computational tools for comparative genomics. <i>Nucleic Acids Research</i> , 2004 , 32, W273-9 The ENCODE (ENCyclopedia Of DNA Elements) Project. <i>Science</i> , 2004 , 306, 636-40 SLAM: cross-species gene finding and alignment with a generalized pair hidden Markov model.	33-3	1441 1692
59 58 57	VISTA: computational tools for comparative genomics. <i>Nucleic Acids Research</i> , 2004 , 32, W273-9 The ENCODE (ENCyclopedia Of DNA Elements) Project. <i>Science</i> , 2004 , 306, 636-40 SLAM: cross-species gene finding and alignment with a generalized pair hidden Markov model. <i>Genome Research</i> , 2003 , 13, 496-502	33·3 9·7	1441 1692 112
59 58 57 56	VISTA: computational tools for comparative genomics. <i>Nucleic Acids Research</i> , 2004 , 32, W273-9 The ENCODE (ENCyclopedia Of DNA Elements) Project. <i>Science</i> , 2004 , 306, 636-40 SLAM: cross-species gene finding and alignment with a generalized pair hidden Markov model. <i>Genome Research</i> , 2003 , 13, 496-502 AVID: A global alignment program. <i>Genome Research</i> , 2003 , 13, 97-102 HMM sampling and applications to gene finding and alternative splicing. <i>Bioinformatics</i> , 2003 , 19	33.39.79.7	1441 1692 112 328
59 58 57 56 55	VISTA: computational tools for comparative genomics. <i>Nucleic Acids Research</i> , 2004 , 32, W273-9 The ENCODE (ENCyclopedia Of DNA Elements) Project. <i>Science</i> , 2004 , 306, 636-40 SLAM: cross-species gene finding and alignment with a generalized pair hidden Markov model. <i>Genome Research</i> , 2003 , 13, 496-502 AVID: A global alignment program. <i>Genome Research</i> , 2003 , 13, 97-102 HMM sampling and applications to gene finding and alternative splicing. <i>Bioinformatics</i> , 2003 , 19 Suppl 2, ii36-41	33·3 9·7 9·7 7·2	1441 1692 112 328 43

51	Strategies and tools for whole-genome alignments. <i>Genome Research</i> , 2003 , 13, 73-80	9.7	165
50	MAVID multiple alignment server. <i>Nucleic Acids Research</i> , 2003 , 31, 3525-6	20.1	40
49	SLAM web server for comparative gene finding and alignment. <i>Nucleic Acids Research</i> , 2003 , 31, 3507-9	20.1	8
48	Initial sequencing and comparative analysis of the mouse genome. <i>Nature</i> , 2002 , 420, 520-62	50.4	5376
47	Mapping and identification of essential gene functions on the X chromosome of Drosophila. <i>EMBO Reports</i> , 2002 , 3, 34-8	6.5	99
46	rVista for comparative sequence-based discovery of functional transcription factor binding sites. <i>Genome Research</i> , 2002 , 12, 832-9	9.7	282
45	The computational challenges of applying comparative-based computational methods to whole genomes. <i>Briefings in Bioinformatics</i> , 2002 , 3, 18-22	13.4	9
44	Picking alignments from (steiner) trees 2002,		1
43	Applications of generalized pair hidden Markov models to alignment and gene finding problems. Journal of Computational Biology, 2002 , 9, 389-99	1.7	57
42	Applications of generalized pair hidden Markov models to alignment and gene finding problems 2001 ,		5
41	Human and mouse gene structure 2000 ,		4
40	Human and mouse gene structure: comparative analysis and application to exon prediction. <i>Genome Research</i> , 2000 , 10, 950-8	9.7	225
39	Active conservation of noncoding sequences revealed by three-way species comparisons. <i>Genome Research</i> , 2000 , 10, 1304-6	9.7	240
38	A dictionary-based approach for gene annotation. <i>Journal of Computational Biology</i> , 1999 , 6, 419-30	1.7	16
37	Forcing matchings on square grids. <i>Discrete Mathematics</i> , 1998 , 190, 287-294	0.7	34
36	Finding Convex Sets Among Points in the Plane. <i>Discrete and Computational Geometry</i> , 1998 , 19, 405-41	0 5.6	15
35	Constructing status injective graphs. <i>Discrete Applied Mathematics</i> , 1997 , 80, 107-113	1	6
34	Combinatorial Approaches and Conjectures for 2-Divisibility Problems Concerning Domino Tilings of Polyominoes. <i>Electronic Journal of Combinatorics</i> , 1997 , 4,	1.1	7

33	The Barcode, UMI, Set format and BUStools	3
32	Differential analysis of RNA-Seq incorporating quantification uncertainty	31
31	Prober: A general toolkit for analyzing sequencing-based E oeprinting E assays	1
30	Barcode identification for single cell genomics	3
29	Association Mapping from Sequencing Reads Using K-mers	3
28	Fusion detection and quantification by pseudoalignment	11
27	An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types	23
26	Isoform cell type specificity in the mouse primary motor cortex	2
25	Decrease inACE2mRNA expression in aged mouse lung	8
24	Fast and accurate diagnostics from highly multiplexed sequencing assays	4
23	Normalization of single-cell RNA-seq counts by log(x+1)* or log(1+x)*	2
22	Addressing the pooled amplification paradox with unique molecular identifiers in single-cell RNA-seq	1
21	Markedly heterogeneous COVID-19 testing plans among US colleges and universities	6
20	Intrinsic and extrinsic noise are distinguishable in a synthesis Lexport Lidegradation model of mRNA production	4
19	A multimodal cell census and atlas of the mammalian primary motor cortex	12
18	Identification of transcriptional signatures for cell types from single-cell RNA-Seq	6
17	A direct comparison of genome alignment and transcriptome pseudoalignment	7
16	Design principles for open source bioinstrumentation: the poseidon syringe pump system as an example	3

15	Compositional Data Analysis is necessary for simulating and analyzing RNA-Seq data	2
14	RNA velocity and protein acceleration from single-cell multiomics experiments	2
13	Modular and efficient pre-processing of single-cell RNA-seq	57
12	Interpretable factor models of single-cell RNA-seq via variational autoencoders	4
11	A curated database reveals trends in single-cell transcriptomics	17
10	Quantifying the tradeoff between sequencing depth and cell number in single-cell RNA-seq	10
9	Gene-level differential analysis at transcript-level resolution	1
8	Analytical solutions of the chemical master equation with bursty production and isomerization reactions	2
7	scvi-tools: a library for deep probabilistic analysis of single-cell omics data	18
6	Museum of Spatial Transcriptomics	10
5	Whole Animal Multiplexed Single-Cell RNA-Seq Reveals Plasticity of Clytia Medusa Cell Types	5
4	Direct simulation of a stochastically driven multi-step birth-death process	1
3	Benchmarking of lightweight-mapping based single-cell RNA-seq pre-processing	4
2	The Specious Art of Single-Cell Genomics	12
1	Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments	1