László Szabados

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6780745/publications.pdf

Version: 2024-02-01

70 papers

9,156 citations

38 h-index 95266 68 g-index

71 all docs

71 docs citations

times ranked

71

10002 citing authors

#	Article	IF	CITATIONS
1	Proline metabolism as regulatory hub. Trends in Plant Science, 2022, 27, 39-55.	8.8	109
2	Small paraquat resistance proteins modulate paraquat and ABA responses and confer drought tolerance to overexpressing Arabidopsis plants. Plant, Cell and Environment, 2022, 45, 1985-2003.	5.7	5
3	Crosstalk between the Arabidopsis Glutathione Peroxidase-Like 5 Isoenzyme (AtGPXL5) and Ethylene. International Journal of Molecular Sciences, 2022, 23, 5749.	4.1	4
4	Diversity of plant heat shock factors: regulation, interactions, and functions. Journal of Experimental Botany, 2021, 72, 1558-1575.	4.8	88
5	Biochemical and Gene Expression Analyses in Different Poplar Clones: The Selection Tools for Afforestation of Halomorphic Environments. Forests, 2021, 12, 636.	2.1	3
6	The AtCRK5 Protein Kinase Is Required to Maintain the ROS NO Balance Affecting the PIN2-Mediated Root Gravitropic Response in Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 5979.	4.1	30
7	Microcystin-LR, a cyanobacterial toxin affects root development by changing levels of PIN proteins and auxin response in Arabidopsis roots. Chemosphere, 2021, 276, 130183.	8.2	6
8	Characterization of abiotic stress-responsive RD29B and RD17 genes in different poplar clones. Topola, 2020, , 13-20.	0.4	2
9	AtCRK5 Protein Kinase Exhibits a Regulatory Role in Hypocotyl Hook Development during Skotomorphogenesis. International Journal of Molecular Sciences, 2019, 20, 3432.	4.1	20
10	Overexpression of the Arabidopsis glutathione peroxidase-like 5 gene (AtGPXL5) resulted in altered plant development and redox status. Environmental and Experimental Botany, 2019, 167, 103849.	4.2	15
11	Striving Towards Abiotic Stresses: Role of the Plant CDPK Superfamily Members. , 2019, , 99-105.		4
12	The mitogen-activated protein kinase 4-phosphorylated heat shock factor A4A regulates responses to combined salt and heat stresses. Journal of Experimental Botany, 2019, 70, 4903-4918.	4.8	63
13	Light Control of Salt-Induced Proline Accumulation Is Mediated by ELONGATED HYPOCOTYL 5 in Arabidopsis. Frontiers in Plant Science, 2019, 10, 1584.	3.6	28
14	CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana. International Journal of Molecular Sciences, 2019, 20, 6120.	4.1	24
15	SELENOPROTEIN O is a chloroplast protein involved in ROS scavenging and its absence increases dehydration tolerance in Arabidopsis thaliana. Plant Science, 2018, 270, 278-291.	3.6	15
16	Comprehensive analysis of antioxidant mechanisms in Arabidopsis glutathione peroxidase-like mutants under salt- and osmotic stress reveals organ-specific significance of the AtGPXL's activities. Environmental and Experimental Botany, 2018, 150, 127-140.	4.2	30
17	Exogenously applied salicylic acid maintains redox homeostasis in salt-stressed Arabidopsis gr1 mutants expressing cytosolic roGFP1. Plant Growth Regulation, 2018, 86, 181-194.	3.4	40
18	PlantSize Offers an Affordable, Non-destructive Method to Measure Plant Size and Color in Vitro. Frontiers in Plant Science, 2018, 9, 219.	3.6	33

#	Article	IF	CITATIONS
19	Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: AtCRK1 Regulates Responses to Continuous Light. International Journal of Molecular Sciences, 2018, 19, 1282.	4.1	27
20	Proline Accumulation Is Regulated by Transcription Factors Associated with Phosphate Starvation. Plant Physiology, 2017, 175, 555-567.	4.8	73
21	Physiological and molecular responses to heavy metal stresses suggest different detoxification mechanism of Populus deltoides and P. x canadensis. Journal of Plant Physiology, 2016, 201, 62-70.	3.5	35
22	Gene mining in halophytes: functional identification of stress tolerance genes in <i>Lepidium crassifolium (i). Plant, Cell and Environment, 2016, 39, 2074-2084.</i>	5.7	25
23	Screening Stress Tolerance Traits in Arabidopsis Cell Cultures. Methods in Molecular Biology, 2016, 1398, 235-246.	0.9	0
24	The role of Arabidopsis glutathione transferase F9 gene under oxidative stress in seedlings. Acta Biologica Hungarica, 2015, 66, 406-418.	0.7	21
25	Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Functional Plant Biology, 2015, 42, 1129.	2.1	48
26	Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses. Journal of Plant Physiology, 2015, 176, 192-201.	3.5	284
27	The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor <scp>VII</scp> genes <i><scp>RAP</scp>2.12</i> , <i><scp>RAP</scp>2.2</i> and <i><scp>RAP</scp>2.3</i> . Plant Journal, 2015, 82, 772-784.	5.7	170
28	Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biological Reviews, 2015, 90, 1065-1099.	10.4	151
29	The Arabidopsis ZINC FINGER PROTEIN3 Interferes with Abscisic Acid and Light Signaling in Seed Germination and Plant Development Â. Plant Physiology, 2014, 165, 1203-1220.	4.8	89
30	The Heat Shock Factor A4A Confers Salt Tolerance and Is Regulated by Oxidative Stress and the Mitogen-Activated Protein Kinases MPK3 and MPK6 Â Â Â. Plant Physiology, 2014, 165, 319-334.	4.8	186
31	Inactivation of Plasma Membrane–Localized CDPK-RELATED KINASE5 Decelerates PIN2 Exocytosis and Root Gravitropic Response in ⟨i⟩Arabidopsis⟨/i⟩ Â. Plant Cell, 2013, 25, 1592-1608.	6.6	87
32	Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4. BMC Plant Biology, 2013, 13, 174.	3.6	48
33	Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis. Plant Science, 2012, 182, 87-93.	3.6	63
34	Differential contribution of individual dehydrin genes from Physcomitrella patens to salt and osmotic stress tolerance. Plant Science, 2012, 190, 89-102.	3.6	72
35	Transformation Using Controlled cDNA Overexpression System. Methods in Molecular Biology, 2012, 913, 277-290.	0.9	5
36	Plants in Extreme Environments. Advances in Botanical Research, 2011, 57, 105-150.	1.1	48

#	Article	IF	CITATIONS
37	Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant Science, 2011, 181, 140-150.	3.6	67
38	Enhanced activity of galactono-1,4-lactone dehydrogenase and ascorbate–glutathione cycle in mitochondria from complex III deficient Arabidopsis. Plant Physiology and Biochemistry, 2011, 49, 809-815.	5.8	29
39	Proline metabolism and transport in plant development. Amino Acids, 2010, 39, 949-962.	2.7	290
40	Arabidopsis S6 kinase mutants display chromosome instability and altered RBR1–E2F pathway activity. EMBO Journal, 2010, 29, 2979-2993.	7.8	98
41	Genetic Screens to Identify Plant Stress Genes. Methods in Molecular Biology, 2010, 639, 121-139.	0.9	16
42	Methods for Determination of Proline in Plants. Methods in Molecular Biology, 2010, 639, 317-331.	0.9	232
43	Proline: a multifunctional amino acid. Trends in Plant Science, 2010, 15, 89-97.	8.8	3,090
44	Genetic technologies for the identification of plant genes controlling environmental stress responses. Functional Plant Biology, 2009, 36, 696.	2.1	11
45	Duplicated <i>P5CS</i> genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant Journal, 2008, 53, 11-28.	5.7	642
46	Functional Identification of Arabidopsis Stress Regulatory Genes Using the Controlled cDNA Overexpression System Â. Plant Physiology, 2008, 147, 528-542.	4.8	117
47	Arabidopsis PPR40 Connects Abiotic Stress Responses to Mitochondrial Electron Transport Â. Plant Physiology, 2008, 146, 1721-1737.	4.8	137
48	The Impact of the Absence of Aliphatic Glucosinolates on Insect Herbivory in Arabidopsis. PLoS ONE, 2008, 3, e2068.	2.5	223
49	Arabidopsis PPP family of serine/threonine phosphatases. Trends in Plant Science, 2007, 12, 169-176.	8.8	201
50	Proline Accumulation and AtP5CS2 Gene Activation Are Induced by Plant-Pathogen Incompatible Interactions in Arabidopsis. Molecular Plant-Microbe Interactions, 2004, 17, 343-350.	2.6	250
51	Gene Trapping with Firefly Luciferase in Arabidopsis. Tagging of Stress-Responsive Genes. Plant Physiology, 2004, 134, 18-27.	4.8	57
52	Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Molecular Biology, 2003, 51, 363-372.	3.9	251
53	Distribution of 1000 sequenced T-DNA tags in theArabidopsisgenome. Plant Journal, 2002, 32, 233-242.	5.7	143
54	Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5322-5327.	7.1	178

#	Article	IF	CITATIONS
55	Isolation and characterization of two different cDNAs of delta1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Molecular Biology, 1998, 38, 755-764.	3.9	65
56	Gene identification with sequenced Tâ€ĐNA tags generated by transformation ofArabidopsiscell suspension. Plant Journal, 1998, 13, 707-716.	5.7	122
57	T-DNA trapping of a cryptic promoter identifies an ortholog of highly conserved SNZ growth arrest response genes in Arabidopsis. Plant Science, 1998, 138, 217-228.	3.6	20
58	Differential expression of two <i>P5CS</i> genes controlling proline accumulation during saltâ€stress requires ABA and is regulated by <i>ABA1, ABI1</i> and <i>AXR2</i> in <i>Arabidopsis</i> Plant Journal, 1997, 12, 557-569.	5.7	134
59	Differential expression of two P5CS genes controlling proline accumulation during saltâ€stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant Journal, 1997, 12, 557-569.	5.7	364
60	New plant promoter and enhancer testing vectors. Molecular Breeding, 1995, 1, 419-423.	2.1	60
61	A simple method for isolation, liquid culture, transformation and regeneration of Arabidopsis thaliana protoplasts. Plant Cell Reports, 1995, 14, 221-6.	5.6	33
62	Specialized vectors for gene tagging and expression studies. , 1994, , 53-74.		52
63	Chimeric genes and transgenic plants are used to study the regulation of genes involved in symbiotic plant-microbe interactions (nodulin genes). Genesis, 1990, 11, 182-196.	2.1	25
64	Functional Analysis of the Sesbania rostrata Leghemoglobin glb3 Gene 5'-Upstream Region in Transgenic Lotus corniculatus and Nicotiana tabacum Plants. Plant Cell, 1990, 2, 973.	6.6	36
65	Regulation of plant genes specifically induced in nitrogen-fixing nodules: role of cis-acting elements and trans-acting factors in leghemoglobin gene expression. Plant Molecular Biology, 1989, 13, 319-325.	3.9	36
66	In vitro somatic embryogenesis and plant regeneration of cassava. Plant Cell Reports, 1987, 6, 248-251.	5 . 6	70
67	Regeneration of isolated mesophyll and cell suspension protoplasts to plants in Stylosanthes guianensis. A tropical forage legume. Plant Cell Reports, 1986, 5, 174-177.	5.6	12
68	Callus formation from protoplasts of a sugarbeet cell suspension culture. Plant Cell Reports, 1985, 4, 195-198.	5 . 6	24
69	Uptake of isolated plant chromosomes by plant protoplasts. Planta, 1981, 151, 141-145.	3.2	83
70	Fusion between interphase and mitotic plant protoplasts. Experimental Cell Research, 1980, 127, 442-446.	2.6	36