Qi Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6780514/publications.pdf

Version: 2024-02-01

304743 345221 1,350 45 22 36 citations h-index g-index papers 1319 45 45 45 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Biodegradation of di-n-octyl phthalate by <i>Gordonia</i> sp. Lff and its application in soil. Environmental Technology (United Kingdom), 2022, 43, 2604-2611.	2.2	4
2	Performance and mechanisms of microwave-assisted zerovalent iron/pyrite for advance remediation of strongly alkaline high Cr(VI) contaminated soil. Environmental Pollution, 2022, 298, 118855.	7.5	11
3	Yeast Extract Affecting the Transformation of Biogenic Tooeleite and Its Stability. Applied Sciences (Switzerland), 2022, 12, 3290.	2.5	2
4	Formation, stability and mobility of soluble Cr(III) during Cr(VI) reduction by Pannonibacter phragmitetus BB. Environmental Technology and Innovation, 2022, 27, 102496.	6.1	7
5	Interaction of pyrite with zerovalent iron with superior reductive ability <i>via</i> Fe(<scp>ii</scp>) regeneration. Environmental Science: Nano, 2022, 9, 2713-2725.	4.3	4
6	Highly effective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar. Ecotoxicology and Environmental Safety, 2021, 207, 111294.	6.0	81
7	Simultaneous immobilization of Pb, Cd and As in soil by hybrid iron-, sulfate- and phosphate-based bio-nanocomposite: Effectiveness, long-term stability and bioavailablity/bioaccessibility evaluation. Chemosphere, 2021, 266, 128960.	8.2	23
8	Reductive materials for remediation of hexavalent chromium contaminated soil $\hat{a} \in A$ review. Science of the Total Environment, 2021, 773, 145654.	8.0	75
9	Synergistic chromium(VI) reduction and phenol oxidative degradation by FeS2/FeO and persulfate. Chemosphere, 2021, 281, 130957.	8.2	24
10	The role of extracellular polymeric substances (EPS) in the reduction of $Cr(VI)$ by Pannonibacter phragmitetus BB. Journal of Environmental Chemical Engineering, 2021, 9, 106163.	6.7	11
11	Characteristics, kinetics, thermodynamics and long-term effects of zerovalent iron/pyrite in remediation of Cr(VI)-contaminated soil. Environmental Pollution, 2021, 289, 117830.	7.5	30
12	Multidimensional pollution and potential ecological and health risk assessments of radionuclides and metals in the surface soils of a uranium mine in East China. Journal of Soils and Sediments, 2020, 20, 775-791.	3.0	17
13	Influence of synthesis variables of a sol-gel process on the properties of mesoporous alumina and their fluoride adsorption. Materials Chemistry and Physics, 2020, 242, 122499.	4.0	25
14	Strong synergistic effect of Co3O4 encapsulated in nitrogen-doped carbon nanotubes on the nonradical-dominated persulfate activation. Carbon, 2020, 158, 172-183.	10.3	77
15	Structure-dependent catalysis of Co3O4 crystals in persulfate activation via nonradical pathway. Applied Surface Science, 2020, 525, 146482.	6.1	36
16	Assessment of water quality and safety based on multi-statistical analyses of nutrients, biochemical indexes and heavy metals. Journal of Central South University, 2020, 27, 1211-1223.	3.0	3
17	Systematic Assessment of Health Risk from Metals in Surface Sediment of the Xiangjiang River, China. International Journal of Environmental Research and Public Health, 2020, 17, 1677.	2.6	8
18	Formation and stability of biogenic tooeleite during Fe(II) oxidation by Acidithiobacillus ferrooxidans. Materials Science and Engineering C, 2020, 111, 110755.	7. 3	5

#	Article	IF	CITATIONS
19	Enhanced chloride removal of phosphorus doping in carbon material for capacitive deionization: Experimental measurement and theoretical calculation. Science of the Total Environment, 2020, 720, 137637.	8.0	21
20	Arsenic(III) biotransformation to tooeleite associated with the oxidation of Fe(II) via Acidithiobacillus ferrooxidans. Chemosphere, 2020, 248, 126080.	8.2	21
21	Dynamic proteome responses to sequential reduction of Cr(VI) and adsorption of Pb(II) by Pannonibacter phragmitetus BB. Journal of Hazardous Materials, 2020, 386, 121988.	12.4	39
22	Enhanced uranium bioleaching high-fluorine and low-sulfur uranium ore by a mesophilic acidophilic bacterial consortium with pyrite. Journal of Radioanalytical and Nuclear Chemistry, 2019, 321, 711-722.	1.5	11
23	Response of Cupriavidus basilensis B-8 to CuO nanoparticles enhances Cr(VI) reduction. Science of the Total Environment, 2019, 688, 46-55.	8.0	20
24	Enhanced adsorption-coupled reduction of hexavalent chromium by 2D poly(m-phenylenediamine)-functionalized reduction graphene oxide. Environmental Science and Pollution Research, 2019, 26, 31099-31110.	5.3	23
25	Optimization of bioleaching high-fluorine and low-sulfur uranium ore by response surface method. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 781-790.	1.5	12
26	Cr(VI) reduction in chromium-contaminated soil by indigenous microorganisms under aerobic condition. Transactions of Nonferrous Metals Society of China, 2019, 29, 1304-1311.	4.2	36
27	Seasonal and spatial contamination statuses and ecological risk of sediment cores highly contaminated by heavy metals and metalloids in the Xiangjiang River. Environmental Geochemistry and Health, 2019, 41, 1617-1633.	3.4	20
28	Multivariate Analyses and Human Health Assessments of Heavy Metals for Surface Water Quality in the Xiangjiang River Basin, China. Environmental Toxicology and Chemistry, 2019, 38, 1645-1657.	4.3	24
29	Simultaneous adsorption of As(III), Cd(II) and Pb(II) by hybrid bio-nanocomposites of nano hydroxy ferric phosphate and hydroxy ferric sulfate particles coating on Aspergillus niger. Chemosphere, 2019, 223, 551-559.	8.2	34
30	Surface water quality and potential health risk assessments in Changsha-Zhuzhou-Xiangtan section of Xiangjiang River, China. Journal of Central South University, 2019, 26, 3252-3260.	3.0	3
31	Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites. Environmental Science and Pollution Research, 2018, 25, 11970-11980.	5.3	45
32	Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soils. Chemosphere, 2018, 206, 83-91.	8.2	56
33	Formation of one-dimensional composites of poly(m-phenylenediamine)s based on Streptomyces for adsorption of hexavalent chromium. International Journal of Environmental Science and Technology, 2018, 15, 1411-1422.	3.5	12
34	Discerning three novel chromate reduce and transport genes of highly efficient Pannonibacter phragmitetus BB: From genome to gene and protein. Ecotoxicology and Environmental Safety, 2018, 162, 139-146.	6.0	38
35	Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil. Chemosphere, 2017, 181, 1-8.	8.2	43
36	High-resolution analyses reveal structural diversity patterns of microbial communities in Chromite Ore Processing Residue (COPR) contaminated soils. Chemosphere, 2017, 183, 266-276.	8.2	49

#	Article	IF	CITATION
37	Distribution and Behavior of Arsenic During the Reducing-Matting Smelting Process. Jom, 2017, 69, 1077-1083.	1.9	15
38	A Comparative Evaluation of Different Sediment Quality Guidelines for Metal and Metalloid Pollution in the Xiangjiang River, Hunan, China. Archives of Environmental Contamination and Toxicology, 2017, 73, 593-606.	4.1	23
39	Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment. Environmental Science and Pollution Research, 2017, 24, 874-885.	5. 3	170
40	Isolation and Identification of Two Novel Alkaligenous Arsenic(III)â€Oxidizing Bacteria From a Realgar Mine, China. Clean - Soil, Air, Water, 2017, 45, .	1.1	3
41	Structural and Genetic Diversity of Hexavalent Chromium-Resistant Bacteria in Contaminated Soil. Geomicrobiology Journal, 2016, 33, 222-229.	2.0	33
42	Combination of biological pretreatment with NaOH/Urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw. Bioresource Technology, 2015, 198, 725-731.	9.6	66
43	Bacterial community dynamics during bioremediation of Cr(VI)-contaminated soil. Applied Soil Ecology, 2015, 85, 50-55.	4.3	39
44	Assessment of the stability of chromium in remedied soils by Pannonibacter phragmitetus BB and its risk to groundwater. Journal of Soils and Sediments, 2014, 14, 1098-1106.	3.0	15
45	Treatment of Cr(VI) contaminated water with Pannonibacter phragmitetus BB. Environmental Earth Sciences, 2014, 71, 4333-4339.	2.7	36