Konstantin V Oskomov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6780181/publications.pdf

Version: 2024-02-01

28 papers 298 citations

1040018 9 h-index 17 g-index

28 all docs 28 docs citations 28 times ranked 244 citing authors

#	Article	IF	CITATIONS
1	Surface alloying of stainless steel 316 with copper using pulsed electron-beam melting of film–substrate system. Surface and Coatings Technology, 2006, 200, 6378-6383.	4.8	86
2	a-C:H films deposited in the plasma of barrier and surface discharges at atmospheric pressure. Surface and Coatings Technology, 1997, 96, 123-128.	4.8	37
3	Ion-assisted pulsed magnetron sputtering deposition of ta-C films. Thin Solid Films, 2001, 389, 16-26.	1.8	35
4	Properties of ultra-thin Cu films grown by high power pulsed magnetron sputtering. Thin Solid Films, 2017, 631, 72-79.	1.8	22
5	Influence of deposition conditions on mechanical properties of a-C:H:SiOx films prepared by plasma-assisted chemical vapor deposition method. Surface and Coatings Technology, 2018, 349, 547-555.	4.8	22
6	Modifying the surface of a titanium alloy with an electron beam and a-C:H:SiOx coating deposition to reduce hemolysis in cardiac assist devices. Surface and Coatings Technology, 2020, 381, 125113.	4.8	17
7	Effect of substrate bias and substrate/plasma generator distance on properties of a-C:H:SiOx films synthesized by PACVD. Thin Solid Films, 2019, 669, 253-261.	1.8	12
8	Thermal stability of anti-reflective and protective a-C:H:SiOx coating for infrared optics. Applied Surface Science, 2020, 510, 145433.	6.1	12
9	Preparation of nickel-containing conductive amorphous carbon films by magnetron sputtering with negative high-voltage pulsed substrate bias. Thin Solid Films, 2018, 650, 37-43.	1.8	9
10	Effect of the plasma confinement on properties of a-C:H:SiOx films grown by plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 061512.	2.1	8
11	Surface characterization and biological assessment of corrosion-resistant a-C:H:SiOx PACVD coating for Ti-6Al-4V alloy. Materials Science and Engineering C, 2021, 123, 112002.	7.3	7
12	Use of the hydrocarbon plasma of a low-pressure arc discharge for deposition of highly adhesive a-C:H films. Surface and Coatings Technology, 2000, 135, 18-26.	4.8	5
13	Deposition of highly adhesive amorphous carbon films with the use of preliminary plasma-immersion ion implantation. Surface and Coatings Technology, 2002, 156, 311-316.	4.8	5
14	Improvement of coating deposition and target erosion uniformity in rotating cylindrical magnetrons. Laser and Particle Beams, 2003, 21, 279-283.	1.0	5
15	Effect of deposition conditions on optical properties of a-C:H:SiOx films prepared by plasma-assisted chemical vapor deposition method. Optik, 2018, 172, 107-116.	2.9	5
16	Amorphous hydrogenated carbon films deposited by a closed-drift ion source. Laser and Particle Beams, 2003, 21, 285-289.	1.0	4
17	Kinetics of plasma-assisted chemical vapor deposition combined with inductively excited RF discharge and properties of a-C:H:SiOx coatings. Vacuum, 2022, 199, 110982.	3.5	3
18	IR- and UV-laser interaction with metal surfaces. , 2002, , .		1

#	Article	lF	CITATIONS
19	Thermal stability of a-C:H:SiOx thin films in hydrogen atmosphere. Thin Solid Films, 2019, 690, 137531.	1.8	1
20	Influence of structure and composition of diamond-like nanocomposite coatings on cell viability. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, 062802.	1.2	1
21	Sliding wear characteristics of a-C:H:SiOx coatings. Journal of Tribology, 0, , 1-27.	1.9	1
22	Deposition of a-C:H films on large-area plane dielectric substrates by means of pulsed surface discharge at atmospheric pressure. , 0, , .		0
23	<title>Residual photoresist removal from Si and GaAs surface atomic hydrogen flow treatment</title> ., 2004,,.		O
24	Extended magnetron sputter deposition system with a cylindrical cathode., 0,,.		0
25	Modification of various metals by volume discharge in air atmosphere. , 2015, , .		O
26	Modification of the surface layers of copper by a diffuse discharge in atmospheric pressure air. , 2015, , .		0
27	The Deposition of Silicon-Carbon Coatings in Plasma Based Nonself-Sustained Arc Discharge with Heated Cathode. Key Engineering Materials, 0, 685, 643-647.	0.4	O
28	In Vitro Biodegradation of a-C:H:SiOx Films on Ti-6Al-4V Alloy. Materials, 2022, 15, 4239.	2.9	0