Marion Haag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6780052/publications.pdf

Version: 2024-02-01

		1040056	1199594	
12	232	9	12	
papers	citations	h-index	g-index	
12	12	12	355	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Human Cardiac-Derived Adherent Proliferating Cells Reduce Murine Acute Coxsackievirus B3-Induced Myocarditis. PLoS ONE, 2011, 6, e28513.	2.5	44
2	Gene expression profiling of human mesenchymal stem cells chemotactically induced with CXCL12. Cell and Tissue Research, 2009, 336, 225-236.	2.9	36
3	PDZ Domain-mediated Interaction of Interleukin-16 Precursor Proteins with Myosin Phosphatase Targeting Subunits. Journal of Biological Chemistry, 2003, 278, 42190-42199.	3.4	32
4	Human Endomyocardial Biopsy Specimen-Derived Stromal Cells Modulate Angiotensin II-Induced Cardiac Remodeling. Stem Cells Translational Medicine, 2016, 5, 1707-1718.	3.3	26
5	Endomyocardial biopsy derived adherent proliferating cells—A potential cell source for cardiac tissue engineering. Journal of Cellular Biochemistry, 2010, 109, 564-575.	2.6	23
6	Extracellular vesicles from regenerative human cardiac cells act as potent immune modulators by priming monocytes. Journal of Nanobiotechnology, 2019, 17, 72.	9.1	19
7	Immune attributes of cardiac-derived adherent proliferating (CAP) cells in cardiac therapy. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 362-370.	2.7	15
8	A P19 and P19CL6 Cell-Based Complementary Approach to Determine Paracrine Effects in Cardiac Tissue Engineering. Cells Tissues Organs, 2014, 199, 24-36.	2.3	10
9	The atrial appendage as a suitable source to generate cardiacâ€derived adherent proliferating cells for regenerative cellâ€based therapies. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1404-e1417.	2.7	10
10	Enhanced Immunomodulation in Inflammatory Environments Favors Human Cardiac Mesenchymal Stromal-Like Cells for Allogeneic Cell Therapies. Frontiers in Immunology, 2019, 10, 1716.	4.8	9
11	Cardiac Extracellular Vesicles (EVs) Released in the Presence or Absence of Inflammatory Cues Support Angiogenesis in Different Manners. International Journal of Molecular Sciences, 2019, 20, 6363.	4.1	4
12	Pro-Angiogenic Effect of Endomyocardial Biopsy-Derived Cells for Cardiac Regeneration. Current Tissue Engineering, 2013, 2, 154-159.	0.2	4