Xiu-Zhen Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6779829/publications.pdf Version: 2024-02-01

XIII-ZHEN GAO

#	Article	IF	CITATIONS
1	A Newly Isolated Strain Lysobacter brunescens YQ20 and Its Performance on Wool Waste Biodegradation. Frontiers in Microbiology, 2022, 13, 794738.	3.5	1
2	Functional Studies on an Indel Loop between the Subtypes of <i>meso</i> -Diaminopimelate Dehydrogenase. ACS Catalysis, 2022, 12, 7124-7133.	11.2	7
3	Combination of steam explosion and ionic liquid pretreatments for efficient utilization of fungal chitin from citric acid fermentation residue. Biomass and Bioenergy, 2021, 145, 105967.	5.7	13
4	Application Fields, Positions, and Bioinformatic Mining of Non-active Sites: A Mini-Review. Frontiers in Chemistry, 2021, 9, 661008.	3.6	1
5	Research Progress in Anti-Inflammatory Bioactive Substances Derived from Marine Microorganisms, Sponges, Algae, and Corals. Marine Drugs, 2021, 19, 572.	4.6	10
6	Dissolution and deacetylation of chitin in ionic liquid tetrabutylammonium hydroxide and its cascade reaction in enzyme treatment for chitin recycling. Carbohydrate Polymers, 2020, 230, 115605.	10.2	29
7	Discovery and characterization of a stable lipase with preference toward long-chain fatty acids. Biotechnology Letters, 2020, 42, 171-180.	2.2	3
8	Isolation, characterisation, and genome sequencing of Rhodococcus equi: a novel strain producing chitin deacetylase. Scientific Reports, 2020, 10, 4329.	3.3	11
9	Altered Cofactor Preference of Thermostable StDAPDH by a Single Mutation at K159. International Journal of Molecular Sciences, 2020, 21, 1788.	4.1	2
10	Enhanced Chitin Deacetylase Production Ability of Rhodococcus equi CGMCC14861 by Co-culture Fermentation With Staphylococcus sp. MC7. Frontiers in Microbiology, 2020, 11, 592477.	3.5	8
11	Categories and biomanufacturing methods of glucosamine. Applied Microbiology and Biotechnology, 2019, 103, 7883-7889.	3.6	15
12	Insight into the Highly Conserved and Differentiated Cofactor-Binding Sites of <i>meso</i> -Diaminopimelate Dehydrogenase StDAPDH. Journal of Chemical Information and Modeling, 2019, 59, 2331-2338.	5.4	10
13	Essential role of amino acid position 71 in substrate preference by meso -diaminopimelate dehydrogenase from Symbiobacterium thermophilum IAM14863. Enzyme and Microbial Technology, 2018, 111, 57-62.	3.2	8
14	A Newly Determined Member of the <i>meso</i> -Diaminopimelate Dehydrogenase Family with a Broad Substrate Spectrum. Applied and Environmental Microbiology, 2017, 83, .	3.1	18
15	Structural Analysis Reveals the Substrateâ€Binding Mechanism for the Expanded Substrate Specificity of Mutant <i>meso</i> â€Diaminopimelate Dehydrogenase. ChemBioChem, 2015, 16, 924-929.	2.6	14
16	Distribution, industrial applications, and enzymatic synthesis of d-amino acids. Applied Microbiology and Biotechnology, 2015, 99, 3341-3349.	3.6	78
17	Enzymatic hydrogenation of diverse activated alkenes. Identification of two Bacillus old yellow enzymes with broad substrate profiles. Journal of Molecular Catalysis B: Enzymatic, 2014, 105, 118-125.	1.8	11
18	Engineering the <i>meso</i> -Diaminopimelate Dehydrogenase from Symbiobacterium thermophilum by Site Saturation Mutagenesis for <scp>d</scp> -Phenylalanine Synthesis. Applied and Environmental Microbiology, 2013, 79, 5078-5081.	3.1	29

XIU-ZHEN GAO

#	Article	IF	CITATIONS
19	A Novel <i>meso</i> -Diaminopimelate Dehydrogenase from Symbiobacterium thermophilum: Overexpression, Characterization, and Potential for <scp>d</scp> -Amino Acid Synthesis. Applied and Environmental Microbiology, 2012, 78, 8595-8600.	3.1	40
20	Synthesis of optically active dihydrocarveol via a stepwise or one-pot enzymatic reduction of (R)- and (S)-carvone. Tetrahedron: Asymmetry, 2012, 23, 734-738.	1.8	21
21	Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei. Enzyme and Microbial Technology, 2012, 51, 26-34.	3.2	30