
Thomas O'Brien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6779724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect―restricting tumor growth to oxidative metabolism. Journal of Biological Chemistry, 2018, 293, 15947-15961.	1.6	160
2	Chemically Diverse Group I p21-Activated Kinase (PAK) Inhibitors Impart Acute Cardiovascular Toxicity with a Narrow Therapeutic Window. Journal of Medicinal Chemistry, 2016, 59, 5520-5541.	2.9	57
3	Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nature Chemical Biology, 2016, 12, 779-786.	3.9	180
4	Minimizing CYP2C9 Inhibition of Exposed-Pyridine NAMPT (Nicotinamide Phosphoribosyltransferase) Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 8345-8368.	2.9	24
5	Pharmacological Inhibition of the Histone Lysine Demethylase KDM1A Suppresses the Growth of Multiple Acute Myeloid Leukemia Subtypes. Cancer Research, 2016, 76, 1975-1988.	0.4	89
6	Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable. PLoS ONE, 2016, 11, e0164166.	1.1	17
7	Small molecule inhibition of group I p21-activated kinases in breast cancer induces apoptosis and potentiates the activity of microtubule stabilizing agents. Breast Cancer Research, 2015, 17, 59.	2.2	61
8	Identification of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors with no evidence of CYP3A4 time-dependent inhibition and improved aqueous solubility. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 529-541.	1.0	22
9	Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. , 2015, 151, 16-31.		205
10	Design of Selective PAK1 Inhibitor G-5555: Improving Properties by Employing an Unorthodox Low-p <i>K</i> _a Polar Moiety. ACS Medicinal Chemistry Letters, 2015, 6, 1241-1246.	1.3	68
11	Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4410-7.	3.3	283
12	Retinal Toxicity, in vivo and in vitro, Associated with Inhibition of Nicotinamide Phosphoribosyltransferase. Toxicological Sciences, 2015, 144, 163-172.	1.4	65
13	Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death. Cell Cycle, 2014, 13, 303-314.	1.3	34
14	Discovery of 2-(Cyclohexylmethylamino)pyrimidines as a New Class of Reversible Valosine Containing Protein Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 10443-10454.	2.9	18
15	Depletion of the Central Metabolite NAD Leads to Oncosis-mediated Cell Death. Journal of Biological Chemistry, 2014, 289, 35182-35192.	1.6	62
16	Fragment-based design of 3-aminopyridine-derived amides as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT). Bioorganic and Medicinal Chemistry Letters, 2014, 24, 954-962.	1.0	19
17	Fragment-Based Identification of Amides Derived from <i>trans</i> -2-(Pyridin-3-yl)cyclopropanecarboxylic Acid as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT). Journal of Medicinal Chemistry, 2014, 57, 770-792.	2.9	34
18	Structural Basis for Resistance to Diverse Classes of NAMPT Inhibitors. PLoS ONE, 2014, 9, e109366.	1.1	25

THOMAS O'BRIEN

#	Article	IF	CITATIONS
19	Identification of amides derived from 1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT). Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5488-5497.	1.0	37
20	Structure-Based Discovery of Novel Amide-Containing Nicotinamide Phosphoribosyltransferase (Nampt) Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 6413-6433.	2.9	61
21	Dependence of Tumor Cell Lines and Patient-Derived Tumors on the NAD Salvage Pathway Renders Them Sensitive to NAMPT Inhibition with GNE-618. Neoplasia, 2013, 15, 1151-IN23.	2.3	67
22	Identification of 2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-derived ureas as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT). Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4875-4885.	1.0	31
23	Supplementation of Nicotinic Acid with NAMPT Inhibitors Results in Loss of In Vivo Efficacy in NAPRT1-Deficient Tumor Models. Neoplasia, 2013, 15, 1314-IN3.	2.3	49
24	Identification of Preferred Chemotherapeutics for Combining with a <i>CHK1</i> Inhibitor. Molecular Cancer Therapeutics, 2013, 12, 2285-2295.	1.9	52
25	Discovery of potent and efficacious urea-containing nicotinamide phosphoribosyltransferase (NAMPT) inhibitors with reduced CYP2C9 inhibition properties. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3531-3538.	1.0	38
26	Loss of NAPRT1 Expression by Tumor-Specific Promoter Methylation Provides a Novel Predictive Biomarker for NAMPT Inhibitors. Clinical Cancer Research, 2013, 19, 6912-6923.	3.2	65

3