Steven Barrow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/677944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cucurbituril-Based Molecular Recognition. Chemical Reviews, 2015, 115, 12320-12406.	23.0	1,467
2	Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 2016, 535, 127-130.	13.7	1,391
3	Liquid metals: fundamentals and applications in chemistry. Chemical Society Reviews, 2018, 47, 4073-4111.	18.7	763
4	Surface Plasmon Resonances in Strongly Coupled Gold Nanosphere Chains from Monomer to Hexamer. Nano Letters, 2011, 11, 4180-4187.	4.5	204
5	The surface plasmon modes of self-assembled gold nanocrystals. Nature Communications, 2012, 3, 1275.	5.8	157
6	The Importance of Excess Poly(<i>N</i> -isopropylacrylamide) for the Aggregation of Poly(<i>N</i> -isopropylacrylamide)-Coated Gold Nanoparticles. ACS Nano, 2016, 10, 3158-3165.	7.3	123
7	Plasmonic tunnel junctions for single-molecule redox chemistry. Nature Communications, 2017, 8, 994.	5.8	116
8	DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today, 2013, 8, 138-167.	6.2	113
9	Symmetry Breaking and Silver in Gold Nanorod Growth. ACS Nano, 2015, 9, 715-724.	7.3	104
10	Mapping Bright and Dark Modes in Gold Nanoparticle Chains using Electron Energy Loss Spectroscopy Nano Letters, 2014, 14, 3799-3808.	4.5	100
11	Cucurbit[7]uril as a Supramolecular Artificial Enzyme for Diels–Alder Reactions. Angewandte Chemie - International Edition, 2017, 56, 15688-15692.	7.2	84
12	Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers. Physical Chemistry Chemical Physics, 2013, 15, 4258.	1.3	70
13	Controlling Spatiotemporal Mechanics of Supramolecular Hydrogel Networks with Highly Branched Cucurbit[8]uril Polyrotaxanes. Advanced Functional Materials, 2018, 28, 1702994.	7.8	65
14	Host–Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO ₂ Reduction. ACS Catalysis, 2020, 10, 751-761.	5.5	43
15	Electron Energy Loss Spectroscopy Investigation into Symmetry in Cold Trimer and Tetramer Plasmonic Nanoparticle Structures. ACS Nano, 2016, 10, 8552-8563.	7.3	41
16	Cucurbit[7]uril as a Supramolecular Artificial Enzyme for Diels–Alder Reactions. Angewandte Chemie, 2017, 129, 15894-15898.	1.6	29
17	Inhibiting Analyte Theft in Surface-Enhanced Raman Spectroscopy Substrates: Subnanomolar Quantitative Drug Detection. ACS Sensors, 2019, 4, 2988-2996.	4.0	27
18	Cascaded nanooptics to probe microsecond atomic-scale phenomena. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14819-14826.	3.3	27

STEVEN BARROW

#	Article	IF	CITATIONS
19	Mapping SERS in CB:Au Plasmonic Nanoaggregates. ACS Photonics, 2017, 4, 2681-2686.	3.2	23
20	Smart supramolecular sensing with cucurbit[<i>n</i>]urils: probing hydrogen bonding with SERS. Faraday Discussions, 2017, 205, 505-515.	1.6	20
21	Continuous Growth Synthesis of Zinc Oxide Nanocrystals with Tunable Size and Doping. Chemistry of Materials, 2019, 31, 9604-9613.	3.2	18
22	Self-Assembly of Plasmonic Near-Perfect Absorbers of Light: The Effect of Particle Size. Journal of Physical Chemistry Letters, 2020, 11, 8378-8385.	2.1	15
23	Flow-controlled synthesis of gold nanoparticles in a biphasic system with inline liquid–liquid separation. Reaction Chemistry and Engineering, 2020, 5, 356-366.	1.9	13
24	Hybrid organic–inorganic supramolecular hydrogel reinforced with CePO ₄ nanowires. Polymer Chemistry, 2016, 7, 6485-6489.	1.9	12
25	Preferential binding of unsaturated hydrocarbons in aryl-bisimidazolium·cucurbit[8]uril complexes furbishes evidence for small-molecule π–π interactions. Chemical Science, 2019, 10, 10240-10246.	3.7	12
26	Fluorine-Doped Tin Oxide Colloidal Nanocrystals. Nanomaterials, 2020, 10, 863.	1.9	12
27	Plasmon-induced optical control over dithionite-mediated chemical redox reactions. Faraday Discussions, 2019, 214, 455-463.	1.6	10
28	Breaking plasmonic symmetry through the asymmetric growth of gold nanorods. Optica, 2020, 7, 1666.	4.8	6
29	Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1607-1617.	1.4	4
30	Nanometer control in plasmonic systems through discrete layer-by-layer macrocycle–cation deposition. Nanoscale, 2020, 12, 8706-8710.	2.8	2
31	Host-guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as Hybrid System in CO2 Reduction. , 0, , .		0