
Yunjiang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6778819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CsMYB96 confers resistance to water loss in citrus fruit by simultaneous regulation of water transport and wax biosynthesis. Journal of Experimental Botany, 2022, 73, 953-966.	2.4	20
2	Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. Plant Cell, 2022, 34, 557-578.	3.1	29
3	QTL analysis reveals the effect of CER1-1 and CER1-3 to reduce fruit water loss by increasing cuticular wax alkanes in citrus fruit. Postharvest Biology and Technology, 2022, 185, 111771.	2.9	25
4	Genome-wide association studies of Arabidopsis dark-induced senescence reveals signatures of autophagy in metabolic reprogramming. Autophagy, 2022, 18, 457-458.	4.3	2
5	Comparative analysis of antioxidant activities between dried and fresh walnut kernels by metabolomic approaches. LWT - Food Science and Technology, 2022, 155, 112875.	2.5	14
6	Systematic transcriptomic and metabolomic analysis of walnut (Juglans regia L.) fruit to trace variations in antioxidant activity during ripening. Scientia Horticulturae, 2022, 295, 110849.	1.7	3
7	Cytological and proteomic evidence reveals the involvement of mitochondria in hypoxia-induced quality degradation in postharvest citrus fruit. Food Chemistry, 2022, 375, 131833.	4.2	9
8	CitWRKY28 and CitNAC029 promote the synthesis of cuticular wax by activating CitKCS gene expression in citrus fruit. Plant Cell Reports, 2022, 41, 905-920.	2.8	11
9	Function and transcriptional regulation of <i>CsKCS20</i> in the elongation of very-long-chain fatty acids and wax biosynthesis in <i>Citrus sinensis</i> flavedo. Horticulture Research, 2022, 9, .	2.9	11
10	CsNIP5;1 acts as a multifunctional regulator to confer water loss tolerance in citrus fruit. Plant Science, 2022, 316, 111150.	1.7	5
11	Non-destructive Storage Time Prediction of Newhall Navel Oranges Based on the Characteristics of Rind Oil Glands. Frontiers in Plant Science, 2022, 13, 811630.	1.7	3
12	Comprehensive comparative analysis of lipid profile in dried and fresh walnut kernels by UHPLC-Q-Exactive Orbitrap/MS. Food Chemistry, 2022, 386, 132706.	4.2	15
13	Integrated multi-omics analysis of developing â€~Newhall' orange and its glossy mutant provide insights into citrus fragrance formation. Horticultural Plant Journal, 2022, 8, 435-449.	2.3	7
14	A comparative transcriptomics and eQTL approach identifies <i>SlWD40</i> as a tomato fruit ripening regulator. Plant Physiology, 2022, 190, 250-266.	2.3	9
15	Chlorophyll retention reduces storability and pathogen defense in a novel citrus brown flavedo mutant. Postharvest Biology and Technology, 2022, 192, 112006.	2.9	5
16	Integration of metabolome, histochemistry and transcriptome analysis provides insights into lignin accumulation in oleocellosis-damaged flavedo of citrus fruit. Postharvest Biology and Technology, 2021, 172, 111362.	2.9	20
17	Variations of membrane fatty acids and epicuticular wax metabolism in response to oleocellosis in lemon fruit. Food Chemistry, 2021, 338, 127684.	4.2	15
18	Integrated Transcriptomic and Metabolomic analysis reveals a transcriptional regulation network for the biosynthesis of carotenoids and flavonoids in â€̃Cara cara' navel Orange. BMC Plant Biology, 2021, 21, 29.	1.6	21

#	Article	IF	CITATIONS
19	Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit. Horticulture Research, 2021, 8, 31.	2.9	12
20	Multiomics-based dissection of citrus flavonoid metabolism using a Citrus reticulata × Poncirus trifoliata population. Horticulture Research, 2021, 8, 56.	2.9	24
21	Citrus NIP5;1 aquaporin regulates cell membrane water permeability and alters PIPs plasma membrane localization. Plant Molecular Biology, 2021, 106, 449-462.	2.0	10
22	Red light-induced kumquat fruit coloration is attributable to increased carotenoid metabolism regulated by FcrNAC22. Journal of Experimental Botany, 2021, 72, 6274-6290.	2.4	42
23	Comparative profiling and natural variation of polymethoxylated flavones in various citrus germplasms. Food Chemistry, 2021, 354, 129499.	4.2	27
24	Illuminating the cells: transient transformation of citrus to study gene functions and organelle activities related to fruit quality. Horticulture Research, 2021, 8, 175.	2.9	28
25	Primary Bitter Taste of <i>Citrus</i> is Linked to a Functional Allele of the 1,2-Rhamnosyltransferase Gene Originating from <i>Citrus grandis</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 9869-9882.	2.4	8
26	Comprehensive analysis of KCS gene family in Citrinae reveals the involvement of CsKCS2 and CsKCS11 in fruit cuticular wax synthesis at ripening. Plant Science, 2021, 310, 110972.	1.7	18
27	Ectopic expression of CsMYB30 from Citrus sinensis enhances salt and drought tolerance by regulating wax synthesis in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2021, 166, 777-788.	2.8	19
28	CsMYB96 enhances citrus fruit resistance against fungal pathogen by activating salicylic acid biosynthesis and facilitating defense metabolite accumulation. Journal of Plant Physiology, 2021, 264, 153472.	1.6	21
29	Transcriptomic and metabolomic analyses provide insight into the volatile compounds of citrus leaves and flowers. BMC Plant Biology, 2020, 20, 7.	1.6	18
30	A NAC transcription factor and its interaction protein hinder abscisic acid biosynthesis by synergistically repressing NCED5 in Citrus reticulata. Journal of Experimental Botany, 2020, 71, 3613-3625.	2.4	39
31	The phytochrome-interacting transcription factor CsPIF8 contributes to cold tolerance in citrus by regulating superoxide dismutase expression. Plant Science, 2020, 298, 110584.	1.7	15
32	Lipidomic and transcriptomic analysis reveals reallocation of carbon flux from cuticular wax into plastid membrane lipids in a glossy "Newhall―navel orange mutant. Horticulture Research, 2020, 7, 41.	2.9	23
33	<i>Citrus mangshanensis</i> Pollen Confers a Xenia Effect on Linalool Oxide Accumulation in Pummelo Fruit by Enhancing the Expression of a Cytochrome P450 78A7 Gene <i>CitLO</i> 1. Journal of Agricultural and Food Chemistry, 2019, 67, 9468-9476.	2.4	16
34	The Shared and Specific Genes and a Comparative Genomics Analysis within Three Hanseniaspora Strains. International Journal of Genomics, 2019, 2019, 1-6.	0.8	2
35	Identification of Key Residues Required for RNA Silencing Suppressor Activity of p23 Protein from a Mild Strain of Citrus Tristeza Virus. Viruses, 2019, 11, 782.	1.5	6
36	Cit1,2RhaT and two novel CitdGlcTs participate in flavor-related flavonoid metabolism during citrus fruit development. Journal of Experimental Botany, 2019, 70, 2759-2771.	2.4	42

#	Article	IF	CITATIONS
37	Fatty acid metabolic flux and lipid peroxidation homeostasis maintain the biomembrane stability to improve citrus fruit storage performance. Food Chemistry, 2019, 292, 314-324.	4.2	33
38	A comprehensive proteomic analysis of elaioplasts from citrus fruits reveals insights into elaioplast biogenesis and function. Horticulture Research, 2018, 5, 6.	2.9	21
39	Antagonistic Activity and the Mechanism of <i>Bacillus amyloliquefaciens</i> DH-4 Against Citrus Green Mold. Phytopathology, 2018, 108, 1253-1262.	1.1	48
40	Integrated transcriptomic and metabolomic analyses of a wax deficient citrus mutant exhibiting jasmonic acid-mediated defense against fungal pathogens. Horticulture Research, 2018, 5, 43.	2.9	49
41	Largely different carotenogenesis in two pummelo fruits with different flesh colors. PLoS ONE, 2018, 13, e0200320.	1.1	10
42	GABA Pathway Rate-Limit Citrate Degradation in Postharvest Citrus Fruit Evidence from HB Pumelo (<i>Citrus grandis</i>) × Fairchild (<i>Citrus reticulata</i>) Hybrid Population. Journal of Agricultural and Food Chemistry, 2017, 65, 1669-1676.	2.4	47
43	Characterization and Metabolic Diversity of Flavonoids in Citrus Species. Scientific Reports, 2017, 7, 10549.	1.6	103
44	An R2R3â€MYB transcription factor represses the transformation of α―and βâ€branch carotenoids by negatively regulating expression of <i>CrBCH2</i> and <i>CrNCED5</i> in flavedo of <i>Citrus reticulate</i> . New Phytologist, 2017, 216, 178-192.	3.5	145
45	Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chemistry, 2017, 216, 138-145.	4.2	115
46	Comparative transcriptome and metabolome provides new insights into the regulatory mechanisms of accelerated senescence in litchi fruit after cold storage. Scientific Reports, 2016, 6, 19356.	1.6	48
47	Salicylic acid treatment reduces the rot of postharvest citrus fruit by inducing the accumulation of H2O2, primary metabolites and lipophilic polymethoxylated flavones. Food Chemistry, 2016, 207, 68-74.	4.2	61
48	Regulation of cuticle formation during fruit development and ripening in â€~Newhall' navel orange () Tj ETQq 131-144.	0 0 0 rgBT 1.7	Overlock 10 100
49	Sweating treatment enhances citrus fruit disease resistance by inducing the accumulation of amino acidâ€induced resistance pathway. Physiologia Plantarum, 2015, 155, 109-125.	2.6	18
50	Concentration and distribution of main bitter compounds in fruit tissues of â€~Oroblanco' (Citrus) Tj ETQq0	0	Overlock 10 1
51	Overexpression of Citrus grandis DREB gene in tomato affects fruit size and accumulation of primary metabolites. Scientia Horticulturae, 2015, 192, 460-467.	1.7	9
52	Fluroxypyr—a potential surrogate of 2,4-dichlorophenoxyacetic acid for retarding calyx senescence in postharvest citrus fruit. Postharvest Biology and Technology, 2015, 105, 17-25.	2.9	6
53	Network Analysis of Postharvest Senescence Process in Citrus Fruits Revealed by Transcriptomic and Metabolomic Profiling. Plant Physiology, 2015, 168, 357-376.	2.3	96
54	Comparative study of flavonoid production in lycopene-accumulated and blonde-flesh sweet oranges (Citrus sinensis) during fruit development. Food Chemistry, 2015, 184, 238-246.	4.2	47

#	Article	IF	CITATIONS
55	Distinct Carotenoid and Flavonoid Accumulation in a Spontaneous Mutant of Ponkan (<i>Citrus) Tj ETQq1 1 0.7 Agricultural and Food Chemistry, 2015, 63, 8601-8614.</i>	'84314 rgB] 2.4	「 /Overlock 37
56	Features of citrus terpenoid production as revealed by carotenoid, limonoid and aroma profiles of two pummelos (<i>Citrus maxima</i>) with different flesh color. Journal of the Science of Food and Agriculture, 2015, 95, 111-119.	1.7	29
57	Effects of exogenous 24-epibrassinolide treatment on postharvest quality and resistance of Satsuma mandarin (Citrus unshiu). Postharvest Biology and Technology, 2015, 100, 8-15.	2.9	47
58	Mechanisms of action for 2-phenylethanol isolated from Kloeckera apiculata in control of Penicillium molds of citrus fruits. BMC Microbiology, 2014, 14, 242.	1.3	98
59	Content changes of bitter compounds in †Guoqing No.1' Satsuma mandarin (Citrus unshiu Marc.) during fruit development of consecutive 3 seasons. Food Chemistry, 2014, 145, 963-969.	4.2	44
60	Comprehensive insights on how 2,4-dichlorophenoxyacetic acid retards senescence in post-harvest citrus fruits using transcriptomic and proteomic approaches. Journal of Experimental Botany, 2014, 65, 61-74.	2.4	71
61	Prediction and functional analysis of the sweet orange protein-protein interaction network. BMC Plant Biology, 2014, 14, 213.	1.6	30
62	Comparative analysis of surface wax in mature fruits between Satsuma mandarin (Citrus unshiu) and †Newhall' navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression. Food Chemistry, 2014, 153, 177-185.	4.2	101
63	Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biology, 2013, 13, 44.	1.6	155
64	Integration of Metabolomics and Subcellular Organelle Expression Microarray to Increase Understanding the Organic Acid Changes in Postâ€harvest Citrus Fruit. Journal of Integrative Plant Biology, 2013, 55, 1038-1053.	4.1	44
65	Chemotaxonomic Study of Citrus, Poncirus and Fortunella Genotypes Based on Peel Oil Volatile Compounds - Deciphering the Genetic Origin of Mangshanyegan (Citrus nobilis Lauriro). PLoS ONE, 2013, 8, e58411.	1.1	34
66	Carotenoid accumulation in postharvest "Cara Cara―navel orange (Citrus sinensis Osbeck) fruits stored at different temperatures was transcriptionally regulated in a tissue-dependent manner. Plant Cell Reports, 2012, 31, 1667-1676.	2.8	27
67	Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. Journal of Experimental Botany, 2012, 63, 2873-2893.	2.4	110
68	Volatile Constituents of Wild Citrus Mangshanyegan (Citrus nobilis Lauriro) Peel Oil. Journal of Agricultural and Food Chemistry, 2012, 60, 2617-2628.	2.4	94
69	Microarray Expression Profiling of Postharvest Ponkan Mandarin (Citrus reticulata) Fruit under Cold Storage Reveals Regulatory Gene Candidates and Implications on Soluble Sugars Metabolism. Journal of Integrative Plant Biology, 2011, 53, 358-374.	4.1	40
70	Bioassay-guided isolation and identification of antifungal components from propolis against Penicillium italicum. Food Chemistry, 2011, 127, 210-215.	4.2	52
71	Control of citrus green and blue molds by Chinese propolis. Food Science and Biotechnology, 2010, 19, 1303-1308.	1.2	28
72	Development of Juglans Regia SSR Markers by Data Mining of the EST Database. Plant Molecular Biology Reporter, 2010, 28, 646-653.	1.0	35

#	Article	IF	CITATIONS
73	Comparative proteomics analysis of differentially accumulated proteins in juice sacs of ponkan (Citrus reticulata) fruit during postharvest cold storage. Postharvest Biology and Technology, 2010, 56, 189-201.	2.9	40
74	Improvement of Hanseniaspora uvarum biocontrol activity against gray mold by the addition of ammonium molybdate and the possible mechanisms involved. Crop Protection, 2010, 29, 277-282.	1.0	30
75	Inhibitory activity of tea polyphenol and Hanseniaspora uvarum against Botrytis cinerea infections. Letters in Applied Microbiology, 2010, 51, 258-263.	1.0	35
76	Inhibitory activity of tea polyphenol and <i>Candida ernobii</i> against <i>Diplodia natalensis</i> infections. Journal of Applied Microbiology, 2010, 108, 1066-1072.	1.4	19
77	Farnesol induces apoptosis and oxidative stress in the fungal pathogen <i>Penicillium expansum</i> . Mycologia, 2010, 102, 311-318.	0.8	73
78	Diallyl trisulfide (DATS) effectively induced apoptosis of postharvest diseasePenicillium expansum of citrus. Annals of Microbiology, 2009, 59, 675-679.	1.1	9
79	Somaclonal variation with early juice-sac granulation obtained by inter-specific protoplast fusion in citrus. Journal of Horticultural Science and Biotechnology, 2009, 84, 567-573.	0.9	3
80	Expression of phytoene synthase gene (Psy) is enhanced during fruit ripening of Cara Cara navel orange (Citrus sinensis Osbeck). Plant Cell Reports, 2007, 26, 837-843.	2.8	71
81	A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Physiology, 2005, 25, 661-672.	1.4	76