Javeed Mahmood

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6778523/javeed-mahmood-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

53	3,912 citations	22	59
papers		h-index	g-index
59 ext. papers	4,791 ext. citations	12.1 avg, IF	5.56 L-index

#	Paper	IF	Citations
53	Low-overpotential overall water splitting by a cooperative interface of cobalt-iron hydroxide and iron oxyhydroxide. <i>Cell Reports Physical Science</i> , 2022 , 3, 100762	6.1	3
52	Direct conversion of aromatic amides into crystalline covalent triazine frameworks by a condensation mechanism. <i>Cell Reports Physical Science</i> , 2021 , 2, 100653	6.1	1
51	Fused aromatic networks as a new class of gas hydrate inhibitors. <i>Chemical Engineering Journal</i> , 2021 , 133691	14.7	2
50	3D Porous Fused Aromatic Networks for High Performance Gas and Iodine Uptakes (Adv. Mater. Interfaces 22/2021). <i>Advanced Materials Interfaces</i> , 2021 , 8, 2170128	4.6	
49	3D Porous Fused Aromatic Networks for High Performance Gas and Iodine Uptakes. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2101373	4.6	O
48	Fused Aromatic Network Structures: Fused Aromatic Network with Exceptionally High Carrier Mobility (Adv. Mater. 9/2021). <i>Advanced Materials</i> , 2021 , 33, 2170063	24	
47	Recent Progress in Porous Fused Aromatic Networks and Their Applications. <i>Small Science</i> , 2021 , 1, 200	0007	6
46	Anomalous phonon softening of G-band in compressed graphitic carbon nitride due to strong electrostatic repulsion. <i>Applied Physics Letters</i> , 2021 , 118, 023103	3.4	О
45	Fused aromatic networks with the different spatial arrangement of structural units. <i>Cell Reports Physical Science</i> , 2021 , 100502	6.1	O
44	Synthesis of Saddle-Shape Octaaminotetraphenylene Octahydrochloride. <i>Journal of Organic Chemistry</i> , 2021 , 86, 14398-14403	4.2	1
43	Fused Aromatic Network with Exceptionally High Carrier Mobility. <i>Advanced Materials</i> , 2021 , 33, e2004	767,	6
42	Identifying the electrocatalytic active sites of a Ru-based catalyst with high Faraday efficiency in CO2-saturated media for an aqueous ZntiO2 system. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14927-14	4 9 34	10
41	Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. <i>Nature Communications</i> , 2020 , 11, 1278	17.4	156
40	Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework. <i>Communications Chemistry</i> , 2020 , 3,	6.3	10
39	Vertical two-dimensional layered fused aromatic ladder structure. <i>Nature Communications</i> , 2020 , 11, 2021	17.4	14
38	Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. <i>Nanoscale Horizons</i> , 2020 , 5, 43-56	10.8	101
37	Iron encased organic networks with enhanced lithium storage properties. Energy Storage, 2020, 2, e114	2.8	2

36	Room-Temperature Organic Ferromagnetism. <i>CheM</i> , 2019 , 5, 1012-1014	16.2	4
35	Synergistic Coupling Derived Cobalt Oxide with Nitrogenated Holey Two-Dimensional Matrix as an Efficient Bifunctional Catalyst for Metal-Air Batteries. <i>ACS Nano</i> , 2019 , 13, 5502-5512	16.7	62
34	Forming layered conjugated porous BBL structures. <i>Polymer Chemistry</i> , 2019 , 10, 4185-4193	4.9	6
33	Metal (MI≠ Ru, Pd and Co) embedded in C2N with enhanced lithium storage properties. <i>Materials Today Energy</i> , 2019 , 14, 100359	7	9
32	Fused Aromatic Network Structures as a Platform for Efficient Electrocatalysis. <i>Advanced Materials</i> , 2019 , 31, e1805062	24	22
31	Scalable Synthesis of Tetrapodal Octaamine. European Journal of Organic Chemistry, 2019, 2019, 2335-2	1.333.8	4
30	Robust fused aromatic pyrazine-based two-dimensional network for stably cocooning iron nanoparticles as an oxygen reduction electrocatalyst. <i>Nano Energy</i> , 2019 , 56, 581-587	17.1	24
29	Direct Synthesis of a Covalent Triazine-Based Framework from Aromatic Amides. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8438-8442	16.4	129
28	Direct Synthesis of a Covalent Triazine-Based Framework from Aromatic Amides. <i>Angewandte Chemie</i> , 2018 , 130, 8574-8578	3.6	29
27	A Robust 3D Cage-like Ultramicroporous Network Structure with High Gas-Uptake Capacity. <i>Angewandte Chemie</i> , 2018 , 130, 3473-3478	3.6	4
26	A Robust 3D Cage-like Ultramicroporous Network Structure with High Gas-Uptake Capacity. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3415-3420	16.4	34
25	Defect-Free Encapsulation of Fe in 2D Fused Organic Networks as a Durable Oxygen Reduction Electrocatalyst. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1737-1742	16.4	103
24	Organic Ferromagnetism: Trapping Spins in the Glassy State of an Organic Network Structure. <i>CheM</i> , 2018 , 4, 2357-2369	16.2	29
23	Fe@C2N: A highly-efficient indirect-contact oxygen reduction catalyst. <i>Nano Energy</i> , 2018 , 44, 304-310	17.1	85
22	Hydrogen Evolution Reaction: Encapsulating Iridium Nanoparticles Inside a 3D Cage-Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction (Adv. Mater. 52/2018). <i>Advanced Materials</i> , 2018 , 30, 1870401	24	2
21	Encapsulating Iridium Nanoparticles Inside a 3D Cage-Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2018 , 30, e1805606	24	69
20	Molybdenum-Based Carbon Hybrid Materials to Enhance the Hydrogen Evolution Reaction. <i>Chemistry - A European Journal</i> , 2018 , 24, 18158-18179	4.8	33
19	Controlled Fabrication of Hierarchically Structured Nitrogen-Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst. <i>Advanced Functional Materials</i> , 2017 , 27, 1605717	15.6	62

18	Electrocatalyts: Controlled Fabrication of Hierarchically Structured Nitrogen-Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst (Adv. Funct. Mater. 9/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	1
17	An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. <i>Nature Nanotechnology</i> , 2017 , 12, 441-446	28.7	857
16	Two-Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage. <i>ChemNanoMat</i> , 2017 , 3, 373-391	3.5	82
15	Nitrogen-rich two-dimensional porous polybenzimidazole network as a durable metal-free electrocatalyst for a cobalt reduction reaction in organic dye-sensitized solar cells. <i>Nano Energy</i> , 2017 , 34, 533-540	17.1	11
14	Electrocatalysis: Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst (Small 40/2017). <i>Small</i> , 2017 , 13,	11	1
13	2D Frameworks of C N and C N as New Anode Materials for Lithium-Ion Batteries. <i>Advanced Materials</i> , 2017 , 29, 1702007	24	196
12	Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst. Small, 2017 , 13, 1701167	11	59
11	Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals. <i>Nature Communications</i> , 2017 , 8, 1599	17.4	9
10	Macroporous Inverse Opal-like MoC with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. <i>ACS Nano</i> , 2017 , 11, 7527-7533	16.7	84
9	Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7414-9	11.5	278
8	Unusually Stable Triazine-based Organic Superstructures. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7413-7	16.4	4
7	Unusually Stable Triazine-based Organic Superstructures. <i>Angewandte Chemie</i> , 2016 , 128, 7539-7543	3.6	1
6	Nitrogenated holey two-dimensional structures. <i>Nature Communications</i> , 2015 , 6, 6486	17.4	684
5	Cobalt Oxide Encapsulated in C2N-h2D Network Polymer as a Catalyst for Hydrogen Evolution. <i>Chemistry of Materials</i> , 2015 , 27, 4860-4864	9.6	105
4	Scalable Synthesis of Pure and Stable Hexaaminobenzene Trihydrochloride. <i>Synlett</i> , 2013 , 24, 246-248	2.2	18
3	Edge-carboxylated graphene nanosheets via ball milling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 5588-93	11.5	496
2	A facile synthesis of novel unsymmetrical N-(4-oxo-2-phenyl-3(4H)-quinazolinoyl)-N-(aryl)acetamidines. <i>Chinese Chemical Letters</i> , 2010 , 21, 905-91	o ^{8.1}	2
1	In-Plane Oriented Two-Dimensional Conjugated Metal©rganic Framework Films for High-Performance Humidity Sensing1146-1153		O