Erik C Garnett

List of Publications by Citations

Source: https://exaly.com/author-pdf/6778269/erik-c-garnett-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

91 12,460 37 97 g-index

97 13,887 13.9 6.76 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
91	Enhanced thermoelectric performance of rough silicon nanowires. <i>Nature</i> , 2008 , 451, 163-7	50.4	3293
90	Light trapping in silicon nanowire solar cells. <i>Nano Letters</i> , 2010 , 10, 1082-7	11.5	1783
89	Photovoltaic materials: Present efficiencies and future challenges. <i>Science</i> , 2016 , 352, aad4424	33.3	1192
88	Self-limited plasmonic welding of silver nanowire Junctions. <i>Nature Materials</i> , 2012 , 11, 241-9	27	891
87	Silicon nanowire radial p-n junction solar cells. <i>Journal of the American Chemical Society</i> , 2008 , 130, 922	4-5 6.4	774
86	Nanowire Solar Cells. Annual Review of Materials Research, 2011, 41, 269-295	12.8	493
85	Hybrid silicon nanocone-polymer solar cells. <i>Nano Letters</i> , 2012 , 12, 2971-6	11.5	380
84	Oligo- and polythiophene/ZnO hybrid nanowire solar cells. <i>Nano Letters</i> , 2010 , 10, 334-40	11.5	370
83	Indirect to direct bandgap transition in methylammonium lead halide perovskite. <i>Energy and Environmental Science</i> , 2017 , 10, 509-515	35.4	237
82	Passivation coating on electrospun copper nanofibers for stable transparent electrodes. <i>ACS Nano</i> , 2012 , 6, 5150-6	16.7	161
81	Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements. <i>Nature Nanotechnology</i> , 2009 , 4, 311-4	28.7	145
80	Nanoscale chiral valley-photon interface through optical spin-orbit coupling. <i>Science</i> , 2018 , 359, 443-44	733.3	141
79	Metamaterial mirrors in optoelectronic devices. <i>Nature Nanotechnology</i> , 2014 , 9, 542-7	28.7	136
78	Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation. <i>Nature Communications</i> , 2017 , 8, 15968	17.4	132
77	Large-area free-standing ultrathin single-crystal silicon as processable materials. <i>Nano Letters</i> , 2013 , 13, 4393-8	11.5	126
76	Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells. <i>Nature Communications</i> , 2013 , 4, 2095	17.4	107
75	The expanding world of hybrid perovskites: materials properties and emerging applications. <i>MRS Communications</i> , 2015 , 5, 7-26	2.7	105

(2019-2019)

74	Local Crystal Misorientation Influences Non-radiative Recombination in Halide Perovskites. <i>Joule</i> , 2019 , 3, 3048-3060	27.8	99
73	Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites. <i>Advanced Materials</i> , 2018 , 30, e1804792	24	90
72	Solution-Grown Silver Nanowire Ordered Arrays as Transparent Electrodes. <i>Advanced Materials</i> , 2016 , 28, 905-9	24	89
71	Extreme light absorption in thin semiconductor films wrapped around metal nanowires. <i>Nano Letters</i> , 2013 , 13, 3173-8	11.5	81
70	Growth and Electrical Characteristics of Platinum-Nanoparticle-Catalyzed Silicon Nanowires. <i>Advanced Materials</i> , 2007 , 19, 2946-2950	24	79
69	Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications. <i>Nano Letters</i> , 2010 , 10, 2989-94	11.5	76
68	Carrier Diffusion Lengths in Hybrid Perovskites: Processing, Composition, Aging, and Surface Passivation Effects. <i>Chemistry of Materials</i> , 2016 , 28, 5259-5263	9.6	74
67	Nanoscale Back Contact Perovskite Solar Cell Design for Improved Tandem Efficiency. <i>Nano Letters</i> , 2017 , 17, 5206-5212	11.5	72
66	Direct Observation of Halide Migration and its Effect on the Photoluminescence of Methylammonium Lead Bromide Perovskite Single Crystals. <i>Advanced Materials</i> , 2017 , 29, 1703451	24	68
65	Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal. <i>Nano Letters</i> , 2011 , 11, 5189-95	11.5	65
64	Measuring n and k at the Microscale in Single Crystals of CH3NH3PbBr3 Perovskite. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 616-620	3.8	58
63	Introduction: 1D Nanomaterials/Nanowires. <i>Chemical Reviews</i> , 2019 , 119, 8955-8957	68.1	56
62	Effects of Nafion as a binding agent for unsupported nanoparticle catalysts. <i>Journal of Power Sources</i> , 2003 , 115, 35-39	8.9	53
61	Fundamentals of the nanowire solar cell: Optimization of the open circuit voltage. <i>Applied Physics Reviews</i> , 2018 , 5, 031106	17.3	51
60	Halide Perovskite 3D Photonic Crystals for Distributed Feedback Lasers. ACS Photonics, 2017, 4, 2522-25	50.8	47
59	Boosting Solar Cell Photovoltage via Nanophotonic Engineering. <i>Nano Letters</i> , 2016 , 16, 6467-6471	11.5	47
58	Photovoltaics Reaching for the ShockleyQueisser Limit. ACS Energy Letters, 2020, 5, 3029-3033	20.1	46
57	Increasing Photoluminescence Quantum Yield by Nanophotonic Design of Quantum-Confined Halide Perovskite Nanowire Arrays. <i>Nano Letters</i> , 2019 , 19, 2850-2857	11.5	44

56	General Considerations for Improving Photovoltage in Metal-Insulator-Semiconductor Photoanodes. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 5462-5471	3.8	40
55	Shape-preserving transformation of carbonate minerals into lead halide perovskite semiconductors based on ion exchange/insertion reactions. <i>Nature Chemistry</i> , 2018 , 10, 740-745	17.6	37
54	Controlling crystallization to imprint nanophotonic structures into halide perovskites using soft lithography. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8301-8307	7.1	37
53	Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit. <i>ACS Nano</i> , 2016 , 10, 8620-31	16.7	37
52	Quantifying losses and thermodynamic limits in nanophotonic solar cells. <i>Nature Nanotechnology</i> , 2016 , 11, 1071-1075	28.7	36
51	Resonant Nanophotonic Spectrum Splitting for Ultrathin Multijunction Solar Cells. <i>ACS Photonics</i> , 2015 , 2, 816-821	6.3	34
50	Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications. <i>ACS Applied Materials & Descriptions (Note of Section 2016)</i> 8, 25489-95	9.5	34
49	Perovskite Nanowire Extrusion. <i>Nano Letters</i> , 2017 , 17, 6557-6563	11.5	33
48	A monolithic immersion metalens for imaging solid-state quantum emitters. <i>Nature Communications</i> , 2019 , 10, 2392	17.4	33
47	Engineering the kinetics and interfacial energetics of Ni/NiMo catalyzed amorphous silicon carbide photocathodes in alkaline media. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6842-6852	13	30
46	Photonics for Photovoltaics: Advances and Opportunities. ACS Photonics, 2021, 8, 61-70	6.3	26
45	Growth and Characterization of PDMS-Stamped Halide Perovskite Single Microcrystals. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 6475-6481	3.8	23
44	Transparent Quasi-Interdigitated Electrodes for Semitransparent Perovskite Back-Contact Solar Cells. <i>ACS Applied Energy Materials</i> , 2018 , 1, 4473-4478	6.1	23
43	Solution-phase epitaxial growth of quasi-monocrystalline cuprous oxide on metal nanowires. <i>Nano Letters</i> , 2014 , 14, 5891-8	11.5	23
42	Charge carrier-selective contacts for nanowire solar cells. <i>Nature Communications</i> , 2018 , 9, 3248	17.4	22
41	Metal-Insulator-Semiconductor Nanowire Network Solar Cells. <i>Nano Letters</i> , 2016 , 16, 3689-95	11.5	22
40	Integrating Sphere Microscopy for Direct Absorption Measurements of Single Nanostructures. <i>ACS Nano</i> , 2017 , 11, 1412-1418	16.7	20
39	Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities. <i>ACS Nano</i> , 2020 , 14, 10562-10568	16.7	18

(2020-2018)

38	Broadband highly directive 3D nanophotonic lenses. <i>Nature Communications</i> , 2018 , 9, 4742	17.4	18
37	Super-resolution imaging of light-matter interactions near single semiconductor nanowires. <i>Nature Communications</i> , 2016 , 7, 13950	17.4	17
36	Transformation of Ag nanowires into semiconducting AgFeS2 nanowires. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4340-3	16.4	16
35	Au-Cu2O core-shell nanowire photovoltaics. <i>Applied Physics Letters</i> , 2015 , 106, 023501	3.4	16
34	Spatial Resolution of Coherent Cathodoluminescence Super-Resolution Microscopy. <i>ACS Photonics</i> , 2019 , 6, 1067-1072	5.3	15
33	3D multi-energy deconvolution electron microscopy. <i>Nanoscale</i> , 2017 , 9, 684-689	7.7	13
32	Monocrystalline Nanopatterns Made by Nanocube Assembly and Epitaxy. <i>Advanced Materials</i> , 2017 , 29, 1701064	24	12
31	The Application of Electron Backscatter Diffraction on Halide Perovskite Materials. <i>Advanced Energy Materials</i> , 2020 , 10, 2000364	21.8	12
30	Perovskite solar cells with a hybrid electrode structure. <i>AIP Advances</i> , 2019 , 9, 125037	1.5	12
29	Tunable plasmonic HfN nanoparticles and arrays. <i>Nanoscale</i> , 2019 , 11, 20252-20260	7.7	11
28	Self-Optimized Catalysts: Hot-Electron Driven Photosynthesis of Catalytic Photocathodes. <i>ACS Applied Materials & District Materials & </i>	9.5	10
27	Energy-resolved plasmonic chemistry in individual nanoreactors. <i>Nature Nanotechnology</i> , 2021 , 2	28.7	10
26	Nanocube Imprint Lithography. ACS Nano, 2020 , 14, 11009-11016	16.7	10
25	Close-Packed Ultrasmooth Self-assembled Monolayer of CsPbBr Perovskite Nanocubes. <i>ACS Applied Materials & Applied & Applied Materials & Applied &</i>).5	9
24	Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures. <i>ACS Applied Materials & Acs Applied Materials &</i>	9.5	9
23	Phase-Resolved Surface Plasmon Scattering Probed by Cathodoluminescence Holography. <i>ACS Photonics</i> , 2020 , 7, 1476-1482	5.3	8
22	Direct write contacts for solar cells		8
21	Nanophotonic Emission Control for Improved Photovoltaic Efficiency. <i>ACS Photonics</i> , 2020 , 7, 1589-16026	5.3	6

20	Silicon nanowire hybrid photovoltaics 2010 ,		6
19	Ultrafast Photoinduced Heat Generation by Plasmonic HfN Nanoparticles. <i>Advanced Optical Materials</i> , 2021 , 9, 2100510	8.1	6
18	Nano-antenna enhanced two-focus fluorescence correlation spectroscopy. <i>Scientific Reports</i> , 2017 , 7, 5985	4.9	5
17	Ultrafast Thermal Imprinting of Plasmonic Hotspots. Advanced Materials, 2021, e2105192	24	5
16	AgFeS -Nanowire-Modified BiVO Photoanodes for Photoelectrochemical Water Splitting. <i>ChemPlusChem</i> , 2016 , 81, 1075-1082	2.8	5
15	Surface recombination velocity of methylammonium lead bromide nanowires in anodic aluminium oxide templates. <i>Molecular Systems Design and Engineering</i> , 2018 , 3, 723-728	4.6	5
14	Generalized antireflection coatings for complex bulk metamaterials. <i>Physical Review B</i> , 2016 , 93,	3.3	4
13	Passivation Properties and Formation Mechanism of Amorphous Halide Perovskite Thin Films. <i>Advanced Functional Materials</i> , 2021 , 31, 2010330	15.6	4
12	Benchmarking photoactive thin-film materials using a laser-induced steady-state photocarrier grating. <i>Progress in Photovoltaics: Research and Applications</i> , 2017 , 25, 605-613	6.8	3
11	Shaping Tin Nanocomposites through Transient Local Conversion Reactions. <i>Crystal Growth and Design</i> , 2021 , 21, 4500-4505	3.5	3
10	Unlocking Higher Power Efficiencies in Luminescent Solar Concentrators through Anisotropic Luminophore Emission. <i>ACS Applied Materials & Distributed </i>	9.5	3
9	Recombination and localization: Unfolding the pathways behind conductivity losses in Cs2AgBiBr6 thin films. <i>Applied Physics Letters</i> , 2021 , 119, 131908	3.4	3
8	Quantifying Strain and Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. <i>ACS Applied Materials & Applied & Applied</i>	9.5	2
7	Intermittency of CsPbBr Perovskite Quantum Dots Analyzed by an Unbiased Statistical Analysis. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 12061-12072	3.8	2
6	Direct Patterning of CsPbBr Nanocrystals via Electron-Beam Lithography <i>ACS Applied Energy Materials</i> , 2022 , 5, 1672-1680	6.1	1
5	Fano Lineshapes and Rabi Splittings: Can They Be Artificially Generated or Obscured by the Numerical Aperture?. <i>ACS Photonics</i> , 2021 , 8, 1271-1276	6.3	1
4	Localized photodeposition of catalysts using nanophotonic resonances in silicon photocathodes. Beilstein Journal of Nanotechnology, 2018 , 9, 2097-2105	3	О
3	Directional quantum dot emission by soft-stamping on silicon Mie resonators <i>Nanoscale Advances</i> , 2022 , 4, 1088-1097	5.1	О

- 2 Integrating Sphere Fourier Microscopy of Highly Directional Emission. ACS Photonics, 2021, 8, 1143-11516.3 o
- Enhanced thermoelectric performance of rough silicon nanowires **2010**, 111-115