List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6778185/publications.pdf Version: 2024-02-01

IVAN CREEN

#	Article	IF	CITATIONS
1	Alkaloids from the Crinum variabile (Amaryllidaceae)- including a full house of lycorine and its acylated derivatives. South African Journal of Botany, 2022, 146, 503-508.	2.5	1
2	Importance and Relevance of Phytochemicals Present in Galenia africana. Scientifica, 2022, 2022, 1-12.	1.7	1
3	Covalent Allosteric Inhibitors of Akt Generated Using a Click Fragment Approach. ChemMedChem, 2022, 17, .	3.2	3
4	Frankincense diterpenes as a bio-source for drug discovery. Expert Opinion on Drug Discovery, 2022, 17, 513-529.	5.0	6
5	Fruit Peels: Food Waste as a Valuable Source of Bioactive Natural Products for Drug Discovery. Current Issues in Molecular Biology, 2022, 44, 1960-1994.	2.4	16
6	Fungal metabolites as anti-diabetic agents: emphasis on PTP1B inhibitors. Phytochemistry Reviews, 2021, 20, 119-143.	6.5	5
7	Greenwaylactams A, B and C, the First Group of Sesquiterpene Alkaloids with an Eightâ€Membered Lactam Ring from Greenwayodendron oliveri. ChemistrySelect, 2021, 6, 1705-1709.	1.5	7
8	Fruitful decade of fungal metabolites as anti-diabetic agents from 2010 to 2019: emphasis on α-glucosidase inhibitors. Phytochemistry Reviews, 2021, 20, 145-179.	6.5	13
9	Boswellic acids: privileged structures to develop lead compounds for anticancer drug discovery. Expert Opinion on Drug Discovery, 2021, 16, 1-17.	5.0	15
10	Meroterpenoids: A Comprehensive Update Insight on Structural Diversity and Biology. Biomolecules, 2021, 11, 957.	4.0	34
11	Glycyrrhetinic acid: a promising scaffold for the discovery of anticancer agents. Expert Opinion on Drug Discovery, 2021, 16, 1497-1516.	5.0	26
12	4-Benzyloxylonchocarpin and Muracatanes A-C from Ranunculus muricatus L. and Their Biological Effects. Biomolecules, 2020, 10, 1562.	4.0	8
13	Deciphering the chemical instability of sphaeropsidin A under physiological conditions – degradation studies and structural elucidation of the major metabolite. Organic and Biomolecular Chemistry, 2020, 18, 8147-8160.	2.8	0
14	Cichorins D–F: Three New Compounds from Cichorium intybus and Their Biological Effects. Molecules, 2020, 25, 4160.	3.8	14
15	First-Principles Study on Chromium-Substituted α-Cobalt Oxyhydroxides for Efficient Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 6486-6491.	5.1	9
16	6,7â€Benzotropolone Syntheses Based on Ringâ€Closing Metatheses and Fourâ€Electron Oxidations. European Journal of Organic Chemistry, 2020, 2020, 2929-2955.	2.4	9
17	Synthetic Studies towards Fungal glycosides: An Overview. Current Organic Chemistry, 2020, 24, 2865-2901.	1.6	2
18	Protein tyrosine phosphatase 1B (PTP1B) inhibitors as potential anti-diabetes agents: patent review (2015-2018). Expert Opinion on Therapeutic Patents, 2019, 29, 689-702.	5.0	52

#	Article	IF	CITATIONS
19	Therapeutic Potential of Iridoid Derivatives: Patent Review. Inventions, 2019, 4, 29.	2.5	31
20	Dipeptidyl peptidase IV inhibitors as a potential target for diabetes: patent review (2015-2018). Expert Opinion on Therapeutic Patents, 2019, 29, 535-553.	5.0	17
21	Alkaloids isolated from Haemanthus humilis Jacq., an indigenous South African Amaryllidaceae: Anticancer activity of coccinine and montanine. South African Journal of Botany, 2019, 126, 277-281.	2.5	25
22	Gold nanotubes and nanorings: promising candidates for multidisciplinary fields. International Materials Reviews, 2019, 64, 478-512.	19.3	15
23	Cucurbitacins as Anticancer Agents: A Patent Review. Recent Patents on Anti-Cancer Drug Discovery, 2019, 14, 133-143.	1.6	17
24	Therapeutic potential of glycyrrhetinic acids: a patent review (2010-2017). Expert Opinion on Therapeutic Patents, 2018, 28, 383-398.	5.0	53
25	First isolation of acetovanillone and piceol from Crinum buphanoides and Crinum graminicola (I.) Tj ETQq1 1 0.78	34314 rgB ⁻ 2.5	T /Overlock
26	A Review on Recent Syntheses of Amaryllidaceae Alkaloids and Isocarbostyrils (Time period mid-2016 to) Tj ETQq	0	/gverlock 1
27	Alkaloids isolated from indigenous South African Amaryllidaceae: Crinum buphanoides (Welw. ex) Tj ETQq1 1 0.7 South African Journal of Botany, 2018, 118, 188-191.	'84314 rgE 2.5	3T /Overlock 12
28	Journey Describing the Cytotoxic Potential of Withanolides: A Patent Review. Recent Patents on Anti-Cancer Drug Discovery, 2018, 13, 411-421.	1.6	4
29	A review of the ethnomedicinal uses, phytochemistry and pharmacology of the Pleiocarpa genus. Phytochemistry Reviews, 2017, 16, 97-115.	6.5	9
30	A norterpenoid and tripenoids from <i>Commiphora mukul</i> : isolation and biological activity. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 11-15.	0.7	11
31	A patent review of two fruitful decades (1997-2016) of Isocoumarin research. Expert Opinion on Therapeutic Patents, 2017, 27, 1267-1275.	5.0	20
32	A patent review of the therapeutic potential of isoflavones (2012-2016). Expert Opinion on Therapeutic Patents, 2017, 27, 1135-1146.	5.0	24
33	Lapachol and lapachone analogs: a journey of two decades <i>of patent research</i> (1997-2016). Expert Opinion on Therapeutic Patents, 2017, 27, 1111-1121.	5.0	66
34	A fruitful decade for fungal polyketides from 2007 to 2016: antimicrobial activity, chemotaxonomy and chemodiversity. Future Medicinal Chemistry, 2017, 9, 1631-1648.	2.3	19
35	Ursolic acid derivatives for pharmaceutical use: a patent review (2012-2016). Expert Opinion on Therapeutic Patents, 2017, 27, 1061-1072.	5.0	93
36	Sarniensine, a mesembrine-type alkaloid isolated from Nerine sarniensis, an indigenous South African Amaryllidaceae, with larvicidal and adulticidal activities against Aedes aegypti. FA¬toterapìâ, 2017, 116, 34-38.	2.2	32

#	Article	IF	CITATIONS
37	Therapeutic potential of boswellic acids: a patent review (1990-2015). Expert Opinion on Therapeutic Patents, 2017, 27, 81-90.	5.0	37
38	Bioactive chemical constituents from the resin of Aloe vera. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 955-958.	0.7	7
39	A Novel Biflavonoid from <i>Rhus leptodictya</i> . Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	1
40	Alkaloids with Activity against the Zika Virus Vector Aedes aegypti (L.)—Crinsarnine and Sarniensinol, Two New Crinine and Mesembrine Type Alkaloids Isolated from the South African Plant Nerine sarniensis. Molecules, 2016, 21, 1432.	3.8	32
41	Synthesis and in vitro growth inhibitory activity of novel silyl- and trityl-modified nucleosides. Bioorganic and Medicinal Chemistry, 2016, 24, 2716-2724.	3.0	14
42	Aloeverasides A and B: Two BioactiveC-Glucosyl Chromones fromAloe veraResin. Helvetica Chimica Acta, 2016, 99, 687-690.	1.6	10
43	Lyciumaside and Lyciumate: A New Diacylglycoside and Sesquiterpene Lactone fromLycium shawii. Helvetica Chimica Acta, 2016, 99, 632-635.	1.6	8
44	Anti-proliferative and computational studies of two new pregnane glycosides from Desmidorchis flava. Bioorganic Chemistry, 2016, 67, 95-104.	4.1	11
45	Mycotoxin contamination of home-grown maize in rural northern South Africa (Limpopo and) Tj ETQq1 1 0.78	4314.rgBT / 2.8	Ovgrjock 10
46	Phytochemical and Antimicrobial Screening of Flavanones and Chalcones from Galenia africana and Dicerothamnus rhinocerotis. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	11
47	Isomerization of Allylbenzenes. Chemical Reviews, 2015, 115, 5462-5569.	47.7	223
48	Antimicrobial activity of two mellein derivatives isolated from an endophytic fungus. Medicinal Chemistry Research, 2015, 24, 2111-2114.	2.4	15
49	Desmiflavasides A and B: Two new bioactive pregnane glycosides from the sap of Desmidorchis flava. Phytochemistry Letters, 2015, 12, 153-157.	1.2	11
50	Nizwaside: a new anticancer pregnane glycoside from the sap of Desmidorchis flava. Archives of Pharmacal Research, 2015, 38, 2137-2142.	6.3	10
51	Pleiocarpa pycnantha leaves and its triterpenes induce apoptotic cell death in Caco-2 cells in vitro. BMC Complementary and Alternative Medicine, 2015, 15, 224.	3.7	13
52	Phytochemical and Antimicrobial Screening of Flavanones and Chalcones from Galenia africana and Dicerothamnus rhinocerotis. Natural Product Communications, 2015, 10, 1185-90.	0.5	9
53	An Unusual 2,3-Secotaraxerene and Other Cytotoxic Triterpenoids from Pleiocarpa pycnantha (Apocynaceae) Leaves Collected from Nigeria. Molecules, 2014, 19, 3389-3400.	3.8	9
54	Spiroalkaloids and Coumarins from the Stem Bark of Pauridiantha callicarpoides. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2014, 69, 747-752.	0.7	8

#	Article	IF	CITATIONS
55	C1,C2-ether derivatives of the Amaryllidaceae alkaloid lycorine: Retention of activity of highly lipophilic analogues against cancer cells. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 923-927.	2.2	38
56	meta-Chloroperbenzoic acid (mCPBA): a versatile reagent in organic synthesis. RSC Advances, 2014, 4, 12882-12917.	3.6	94
57	Effects of hippadine on the blood pressure and heart rate in male spontaneously hypertensive Wistar rats. Journal of Ethnopharmacology, 2014, 158, 123-131.	4.1	8
58	Evaluating the cytotoxic effects of novel quinone compounds. Anticancer Research, 2014, 34, 4077-86.	1.1	15
59	Pt–Sn/C as a Possible Methanol-Tolerant Cathode Catalyst for DMFC. Electrocatalysis, 2013, 4, 144-153.	3.0	10
60	Kenganthranol F, a new Anthranol from <i>Psorospermum aurantiacum</i> . Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	2
61	Model Route to 5-Bromo-3,4-dihydro-4-hydroxy-7,9,10-trimethoxy-1,3-dimethyl-1H-naphtho[2,3-c]pyran: A Potential Precursor to Extended Quinones. Synthetic Communications, 2011, 41, 1348-1356.	2.1	1
62	Total Synthesis of Silylâ€Protected Early Intermediates of Polyketide Biosynthesis. European Journal of Organic Chemistry, 2010, 2010, 3080-3092.	2.4	3
63	Antimicrobial Coumarins from the Stem Bark of <i>Afraegle paniculata</i> . Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	12
64	Design and evaluation of anacardic acid derivatives as anticavity agents. European Journal of Medicinal Chemistry, 2008, 43, 1315-1320.	5.5	22
65	Strategies towards the Synthesis of 6â€N,Nâ€Diethylcarbamyloxyâ€1,4â€dimethoxy―7â€naphthylboronic Acid. Synthetic Communications, 2007, 37, 3041-3057.	2.1	8
66	Molecular design of anti-MRSA agents based on the anacardic acid scaffold. Bioorganic and Medicinal Chemistry, 2007, 15, 6236-6241.	3.0	30
67	Synthesis of Some Câ€4 Hydroxybenzo[c]pyrans: A New Approach. Synthetic Communications, 2006, 36, 1631-1636.	2.1	3
68	Bromination Products of 2â€Substituted 5,7â€Dimethoxyâ€4â€Naphthols. Synthetic Communications, 2006, 36, 331-346.	2.1	3
69	Products of an Acetylation Protocol on Two Pentaalkoxynaphthalenes. Synthetic Communications, 2006, 36, 1695-1706.	2.1	5
70	Synthesis of 2â€Acetylâ€4â€hydroxynaphtho[2,3â€b]pyranâ€5,10â€dione and the 4â€Deoxy Analogue as Model Comparative Biological Evaluations. Synthetic Communications, 2004, 34, 2565-2573.	s for 2.1	1
71	Synthesis of Methoxyâ€2â€hydroxyâ€1,4â€naphthoquinones and Reaction of One Isomer with Aldehydes Under Basic Conditions. Synthetic Communications, 2004, 34, 1247-1258.	2.1	18
72	Synthesis of a Naphtho[2,3-c]pyranone as a Model for the Construction of the Lactone Ring. Synthetic Communications, 2003, 33, 1425-1432.	2.1	4

#	Article	IF	CITATIONS
73	SYNTHESIS OF AN UNNATURAL ANACARDIC ACID ANALOGUE. Synthetic Communications, 2002, 32, 947-957.	2.1	8
74	CONDENSATION PRODUCTS BETWEEN CAPROALDEHYDE AND 2-HYDROXY-1,4-NAPHTHOQUINONE. Synthetic Communications, 2001, 31, 719-724.	2.1	5
75	Reaction of Aluminium Chloride with Benzo[C]- and Naphtho[2,3-C]pyrans. Synthetic Communications, 2000, 30, 1035-1044.	2.1	2
76	The Synthesis of New Bronchodilator Prodrugs. Synthetic Communications, 1999, 29, 2419-2430.	2.1	1
77	The Synthesis of Some Naphtho[2,3-b]pyran-5,10-Quinones as Preliminary Models for Biological Evaluations. Synthetic Communications, 1998, 28, 4589-4604.	2.1	4
78	A High Yielding Synthesis of Racemic Hongconin. Synthetic Communications, 1996, 26, 867-880.	2.1	12
79	A Case of Competitive Hydroboration. Synthetic Communications, 1996, 26, 3161-3166.	2.1	6
80	Synthesis of E-3-Hydroxymethyl-1-methoxy-4-(1′-pentenyl)benzene. Synthetic Communications, 1995, 25, 3945-3959.	2.1	4
81	Synthesis of 3-Acetyl-5-methoxy-1,4-naphthoquinone. A New Approach. Synthetic Communications, 1994, 24, 23-28.	2.1	7
82	Claisen and Fries Rearrangement Studies of Some Naphthalene Derivatives. Synthetic Communications, 1994, 24, 3189-3196.	2.1	6
83	Synthesis of 1,5-Dimethoxy-4-naphthol and 2-Allyl-5-methoxy-1,4-Naphthoquinone A New Approach. Synthetic Communications, 1993, 23, 577-584.	2.1	7