Ji Hwan Cha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6778164/publications.pdf Version: 2024-02-01

ΙΙ Ηγλανι Ομα

#	Article	IF	CITATIONS
1	Stochastic Modeling for Reliability. Springer Series in Reliability Engineering, 2013, , .	0.3	111
2	Study of a Stochastic Failure Model in a Random Environment. Journal of Applied Probability, 2007, 44, 151-163.	0.4	71
3	On preventive maintenance of systems with lifetimes dependent on a random shock process. Reliability Engineering and System Safety, 2017, 168, 90-97.	5.1	71
4	Modelling a general standby system and evaluation of its performance. Applied Stochastic Models in Business and Industry, 2008, 24, 159-169.	0.9	63
5	Study of a Stochastic Failure Model in a Random Environment. Journal of Applied Probability, 2007, 44, 151-163.	0.4	62
6	New stochastic models for preventive maintenance and maintenance optimization. European Journal of Operational Research, 2016, 255, 80-90.	3.5	60
7	Characterization of the Generalized Pólya Process and its Applications. Advances in Applied Probability, 2014, 46, 1148-1171.	0.4	57
8	Optimal design of a general warm standby system. Reliability Engineering and System Safety, 2010, 95, 880-886.	5.1	56
9	Bivariate preventive maintenance of systems with lifetimes dependent on a random shock process. European Journal of Operational Research, 2018, 266, 122-134.	3.5	49
10	Point Processes for Reliability Analysis. Springer Series in Reliability Engineering, 2018, , .	0.3	43
11	Optimal mission abort policy for partially repairable heterogeneous systems. European Journal of Operational Research, 2018, 271, 818-825.	3.5	39
12	New shock models based on the generalized Polya process. European Journal of Operational Research, 2016, 251, 135-141.	3.5	33
13	Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair. Reliability Engineering and System Safety, 2018, 180, 362-372.	5.1	30
14	On a Stochastic Survival Model for a System Under Randomly Variable Environment. Methodology and Computing in Applied Probability, 2011, 13, 549-561.	0.7	29
15	Optimal warranty policy with inspection for heterogeneous, stochastically degrading items. European Journal of Operational Research, 2021, 289, 1142-1152.	3.5	29
16	On information-based warranty policy for repairable products from heterogeneous population. European Journal of Operational Research, 2016, 253, 204-215.	3.5	25
17	On optimal grouping and stochastic comparisons for heterogeneous items. Journal of Multivariate Analysis, 2017, 160, 146-156.	0.5	25
18	Burn-in and the performance quality measures in heterogeneous populations. European Journal of Operational Research, 2011, 210, 273-280.	3.5	23

#	Article	IF	CITATIONS
19	Stochastic Intensity for Minimal Repairs in Heterogeneous Populations. Journal of Applied Probability, 2011, 48, 868-876.	0.4	22
20	On a new ageâ€replacement policy for items with observed stochastic degradation. Quality and Reliability Engineering International, 2020, 36, 1132-1143.	1.4	21
21	Maintenance Policy for a System With Stochastically Dependent Failure Modes With Shock-Accumulation Effect. IEEE Transactions on Reliability, 2016, 65, 1284-1297.	3.5	20
22	STOCHASTIC SURVIVAL MODELS WITH EVENTS TRIGGERED BY EXTERNAL SHOCKS. Probability in the Engineering and Informational Sciences, 2012, 26, 183-195.	0.6	18
23	Information-based thinning of point processes and its application to shock models. Journal of Statistical Planning and Inference, 2012, 142, 2345-2350.	0.4	17
24	On preventive maintenance under different assumptions on the failure/repair processes. Quality and Reliability Engineering International, 2018, 34, 66-77.	1.4	15
25	A stochastic model for a general loadâ€sharing system under overload condition. Applied Stochastic Models in Business and Industry, 2010, 26, 624-638.	0.9	14
26	Optimal burn-in procedure for mixed populations based on the device degradation process history. European Journal of Operational Research, 2016, 251, 988-998.	3.5	14
27	Comparison of combined stochastic risk processes and its applications. European Journal of Operational Research, 2011, 215, 404-410.	3.5	13
28	On construction of general classes of bivariate distributions. Journal of Multivariate Analysis, 2014, 127, 151-159.	0.5	13
29	On stochastic comparisons for population age and remaining lifetime. Statistical Papers, 2018, 59, 199-213.	0.7	12
30	On history-dependent shock models. Operations Research Letters, 2013, 41, 232-237.	0.5	11
31	Justifying the Compertz curve of mortality via the generalized Polya process of shocks. Theoretical Population Biology, 2016, 109, 54-62.	0.5	11
32	On some mortality rate processes and mortality deceleration with age. Journal of Mathematical Biology, 2016, 72, 331-342.	0.8	11
33	On optimal replacement of systems with failure rates described by a random jump process. Quality and Reliability Engineering International, 2018, 34, 1590-1604.	1.4	11
34	Virtual age, is it real? ―Discussing virtual age in reliability context. Applied Stochastic Models in Business and Industry, 2021, 37, 3-16.	0.9	10
35	Modeling Discrete Bivariate Data with Applications to Failure and Count Data. Quality and Reliability Engineering International, 2017, 33, 1455-1473.	1.4	9
36	Stochastic ordering for populations of manufactured items. Test, 2018, 27, 173-196.	0.7	9

#	Article	IF	CITATIONS
37	A NOTE ON THE CLASS OF GEOMETRIC COUNTING PROCESSES. Probability in the Engineering and Informational Sciences, 2013, 27, 177-185.	0.6	8
38	Analysis of reliability characteristics in the acceptance sampling tests. Journal of Applied Statistics, 2016, 43, 1874-1891.	0.6	8
39	A Dependent Competing Risks Model for Technological Units Subject to Degradation Phenomena and Catastrophic Failures. Quality and Reliability Engineering International, 2016, 32, 505-517.	1.4	8
40	Bivariate preventive maintenance for repairable systems subject to random shocks. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2017, 231, 643-653.	0.6	8
41	A hybrid preventive maintenance model for systems with partially observable degradation. IMA Journal of Management Mathematics, 2020, 31, 345-365.	1.1	8
42	Poisson generalized gamma process and its properties. Stochastics, 2021, 93, 1123-1140.	0.6	8
43	A Bayesian Change-Point Analysis for Software Reliability Models. Communications in Statistics Part B: Simulation and Computation, 2008, 37, 1855-1869.	0.6	7
44	Stochastic comparison of generalized combined risk processes. Journal of Statistical Planning and Inference, 2013, 143, 818-826.	0.4	7
45	Variables acceptance reliability sampling plan for repairable items. Statistics, 2015, 49, 1141-1156.	0.3	7
46	An informationâ€based burnâ€in procedure for minimally repaired items from mixed population. Applied Stochastic Models in Business and Industry, 2016, 32, 511-525.	0.9	7
47	Optimal Replacement of Heterogeneous Items With Minimal Repairs. IEEE Transactions on Reliability, 2016, 65, 593-603.	3.5	7
48	On bending (down and up) property of reliability measures in mixtures. Metrika, 2017, 80, 455-482.	0.5	7
49	Accelerated Burn-In Procedures and System Maintenance Policies. Communications in Statistics - Theory and Methods, 2009, 38, 719-733.	0.6	6
50	Shocks as Burn-In in Heterogeneous Populations. Communications in Statistics - Theory and Methods, 2012, 41, 325-340.	0.6	6
51	A dynamic stress–strength model with stochastically decreasing strength. Metrika, 2015, 78, 807-827.	0.5	6
52	A dynamic bivariate common shock model with cumulative effect and its actuarial application. Scandinavian Actuarial Journal, 2018, 2018, 890-906.	1.0	6
53	Some results on discrete mixture failure rates. Communications in Statistics - Theory and Methods, 2019, 48, 3884-3898.	0.6	6
54	Poisson Lindley process and its main properties. Statistics and Probability Letters, 2019, 152, 74-81.	0.4	5

#	Article	IF	CITATIONS
55	Point process approach to modeling and analysis of general cascading failure models. Journal of Applied Probability, 2016, 53, 174-186.	0.4	4
56	Reliability sampling plan for repairable items following general failure process and its statistical analysis. Statistics, 2017, 51, 1159-1178.	0.3	4
57	On a New Shot Noise Process and the Induced Survival Model. Methodology and Computing in Applied Probability, 2018, 20, 897-917.	0.7	4
58	New failure and minimal repair processes for repairable systems in a random environment. Applied Stochastic Models in Business and Industry, 2019, 35, 522-536.	0.9	4
59	Variables acceptance reliability sampling plan based on degradation test. Statistical Papers, 2020, 62, 2227.	0.7	4
60	On optimal life extension for degrading systems. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2020, 234, 487-495.	0.6	4
61	Survival of systems with protection subject to two types of external attacks. Annals of Operations Research, 2014, 212, 79-91.	2.6	3
62	Environmental stress screening modelling, analysis and optimization. Reliability Engineering and System Safety, 2015, 139, 149-155.	5.1	3
63	Construction of two new general classes of bivariate distributions based on stochastic orders. Journal of Multivariate Analysis, 2015, 142, 75-85.	0.5	3
64	Stochastic comparisons and multivariate dependence for the epoch times of trend renewal processes. Journal of Multivariate Analysis, 2018, 168, 174-184.	0.5	3
65	Optimal preventive maintenance for systems having a continuous output and operating in a random environment. Top, 2019, 27, 327-350.	1.1	3
66	ON A MULTIVARIATE GENERALIZED POLYA PROCESS WITHOUT REGULARITY PROPERTY. Probability in the Engineering and Informational Sciences, 2020, 34, 484-506.	0.6	3
67	Replacement Policy for Heterogeneous Items Subject to Gamma Degradation Processes. Methodology and Computing in Applied Probability, 2022, 24, 1323-1340.	0.7	3
68	Optimal preventive switching of components in degrading systems. Reliability Engineering and System Safety, 2022, 219, 108266.	5.1	3
69	Acceptance reliability sampling plan for discrete lifetime models. Statistics, 2021, 55, 1291-1309.	0.3	3
70	On a terminating renewal shock process with an independent wear process. Structure and Infrastructure Engineering, 2012, 8, 403-408.	2.0	2
71	Burn-in and the performance quality measures in continuous heterogeneous populations. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2012, 226, 417-425.	0.6	2
72	PRESERVATION PROPERTIES OF A RENEWAL PROCESS STOPPED AT A RANDOM DEPENDENT TIME. Probability in the Engineering and Informational Sciences, 2013, 27, 163-175.	0.6	2

#	Article	IF	CITATIONS
73	Burn-in for Eliminating Weak Items inÂHeterogeneous Populations. Communications in Statistics - Theory and Methods, 2014, 43, 5115-5129.	0.6	2
74	A new generalized burn-in procedure for items in stochastically evolving population. Applied Mathematical Modelling, 2016, 40, 8338-8351.	2.2	2
75	Dynamic mixing probability measures of mixtures. Communications in Statistics - Theory and Methods, 2016, 45, 4824-4839.	0.6	2
76	On some properties of shock processes in a â€~natural' scale. Reliability Engineering and System Safety, 2016, 145, 104-110.	5.1	2
77	Modelling of Marginally Regular Bivariate Counting Process and its Application to Shock Model. Methodology and Computing in Applied Probability, 2018, 20, 1137-1154.	0.7	2
78	A bivariate optimal replacement policy for a system subject to a generalized failure and repair process. Applied Stochastic Models in Business and Industry, 2019, 35, 637-650.	0.9	2
79	Variables acceptance reliability sampling plan for items subject to inverse Gaussian degradation process. Journal of Applied Statistics, 2021, 48, 393-409.	0.6	2
80	Optimal inspection for missions with a possibility of abortion or switching to a lighter regime. Top, 2021, 29, 722-740.	1.1	2
81	Age-replacement policy for items described by stochastic degradation with dependent increments. IMA Journal of Management Mathematics, 2022, 33, 273-287.	1.1	2
82	Rejoinder to "Virtual age, is it real?― Applied Stochastic Models in Business and Industry, 2021, 37, 45-52.	0.9	2
83	On generalized shock models for deteriorating systems. Applied Stochastic Models in Business and Industry, 2013, 29, 496-508.	0.9	1
84	On some characteristics of quality for systems operating in a random environment. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2019, 233, 257-267.	0.6	1
85	Stochastic modeling of quality of systems operating in a heterogeneous environment. Applied Stochastic Models in Business and Industry, 2019, 35, 1344-1365.	0.9	1
86	Application of the generalized Polya process to two types of shock models. AIP Conference Proceedings, 2019, , .	0.3	1
87	A new class of multivariate counting processes and its characterization. Stochastics, 2019, 91, 383-406.	0.6	1
88	ls perfect repair always perfect?. Test, 2020, 29, 90-104.	0.7	1
89	Stochastic modelling of operational quality of k-out-of-n systems. Top, 2020, 28, 424-441.	1.1	1
90	On a multivariate IFR and positively dependent lifetime model induced by multiple shot-noise processes. Statistical Papers, 2021, 62, 561-590.	0.7	1

#	Article	IF	CITATIONS
91	On degradation-based imperfect repair and induced generalized renewal processes. Test, 0, , 1.	0.7	1
92	A new warranty policy for heterogeneous items subject to monotone degradation processes. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, O, , 1748006X2110287.	0.6	1
93	On the delayed worse-than-minimal repair model and its application to preventive replacement. IMA Journal of Management Mathematics, 2022, 34, 101-122.	1.1	1
94	On dynamic information-based life extension. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2021, 235, 690-699.	0.6	1
95	Discrete Time Minimal Repair Process and Its Reliability Applications under Random Environments. Stochastic Models, 0, , 1-22.	0.3	1
96	Balancing load and performance for different failure models. Applied Stochastic Models in Business and Industry, 0, , .	0.9	1
97	A Preventive Replacement Policy for a System Subject to Bivariate Generalized Polya Failure Process. Mathematics, 2022, 10, 1833.	1.1	1
98	Prediction of the residual failure processes based on the process history. Communications in Statistics - Theory and Methods, 2017, 46, 6336-6357.	0.6	0
99	Computational formula for the impact of stochastic dependence on the insurance premium. AIP Conference Proceedings, 2019, , .	0.3	0
100	A new general class of discrete bivariate distributions constructed by using the likelihood ratio. Statistical Papers, 2020, 61, 923-944.	0.7	0
101	A new class of marginally regular multivariate counting processes generated by the mixture of multivariate Poisson processes. Communications in Statistics - Theory and Methods, 2020, , 1-17.	0.6	0
102	A general multivariate new better than used (MNBU) distribution and its properties. Metrika, 2021, 84, 27-46.	0.5	0
103	On some general survival models with delayed failures. Communications in Statistics - Theory and Methods, 0, , 1-18.	0.6	0
104	ON DEGRADATION-BASED REMAINING LIFETIME. Probability in the Engineering and Informational Sciences, 0, , 1-12.	0.6	0
105	Two Reliability Acceptance Sampling Plans for Items Subject to Wiener Process of Degradation. Methodology and Computing in Applied Probability, 0, , 1.	0.7	0
106	Reducing degradation and age of items in imperfect repair modeling. Test, 2022, 31, 1058-1081.	0.7	0