
Peter Swoboda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/677790/publications.pdf Version: 2024-02-01

DETED SWORDDA

#	Article	IF	CITATIONS
1	The C. elegans regulatory factor X (RFX) DAF-19M module: A shift from general ciliogenesis to cell-specific ciliary and behavioral specialization. Cell Reports, 2022, 39, 110661.	2.9	4
2	Differentiation of ciliated human midbrain-derived LUHMES neurons. Journal of Cell Science, 2020, 133,	1.2	6
3	Redox-dependent and redox-independent functions of Caenorhabditis elegans thioredoxin 1. Redox Biology, 2019, 24, 101178.	3.9	9
4	An Expanded Role for the RFX Transcription Factor DAF-19, with Dual Functions in Ciliated and Nonciliated Neurons. Genetics, 2018, 208, 1083-1097.	1.2	11
5	Characterization of the human RFX transcription factor family by regulatory and target gene analysis. BMC Genomics, 2018, 19, 181.	1.2	73
6	DAF-16/FOXO and HLH-30/TFEB function as combinatorial transcription factors to promote stress resistance and longevity. Nature Communications, 2018, 9, 4400.	5.8	113
7	Cilia in Brain Development and Disease. , 2018, , 1-35.		4
8	Ciliary dyslexia candidate genes <i>DYX1C1</i> and <i>DCDC2</i> are regulated by Regulatory Factor X (RFX) transcription factors through Xâ€box promoter motifs. FASEB Journal, 2016, 30, 3578-3587.	0.2	28
9	Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2016, 36, 3157-3169.	1.7	41
10	TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in <i>Caenorhabditis elegans</i> . Genetics, 2016, 203, 387-402.	1.2	18
11	ABCE1 Is a Highly Conserved RNA Silencing Suppressor. PLoS ONE, 2015, 10, e0116702.	1.1	14
12	<i>Cis</i> - and <i>Trans</i> -Regulatory Mechanisms of Gene Expression in the ASJ Sensory Neuron of <i>Caenorhabditis elegans</i> . Genetics, 2015, 200, 123-134.	1.2	14
13	Iron promotes protein insolubility and aging in C. elegans. Aging, 2014, 6, 975-988.	1.4	57
14	Switching on cilia: transcriptional networks regulating ciliogenesis. Development (Cambridge), 2014, 141, 1427-1441.	1.2	273
15	Functional characterization of thioredoxin 3 (TRX-3), a Caenorhabditis elegans intestine-specific thioredoxin. Free Radical Biology and Medicine, 2014, 68, 205-219.	1.3	19
16	RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe. Biochemical and Biophysical Research Communications, 2014, 444, 254-259.	1.0	18
17	Protective effects of the thioredoxin and glutaredoxin systems in dopamine-induced cell death. Free Radical Biology and Medicine, 2014, 73, 328-336.	1.3	41
18	Finding Ciliary Genes. Methods in Enzymology, 2013, 525, 327-350.	0.4	6

Peter Swoboda

#	Article	IF	CITATIONS
19	The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box. Developmental Biology, 2012, 368, 415-426.	0.9	23
20	The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2011, 406, 478-482.	1.0	36
21	The Thioredoxin TRX-1 Modulates the Function of the Insulin-Like Neuropeptide DAF-28 during Dauer Formation in Caenorhabditis elegans. PLoS ONE, 2011, 6, e16561.	1.1	18
22	Increased Expression of the Dyslexia Candidate Gene DCDC2 Affects Length and Signaling of Primary Cilia in Neurons. PLoS ONE, 2011, 6, e20580.	1.1	113
23	Food sensitizes <i>C. elegans</i> avoidance behaviours through acute dopamine signalling. EMBO Journal, 2011, 30, 1110-1122.	3.5	124
24	Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport. Developmental Biology, 2011, 357, 235-247.	0.9	65
25	Dauer pheromone and C-protein signaling modulate the coordination of intraflagellar transport kinesin motor proteins in <i>C. elegans</i> . Journal of Cell Science, 2010, 123, 2077-2084.	1.2	12
26	Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12969-12974.	3.3	89
27	Worms With a Single Functional Sensory Cilium Generate Proper Neuron-Specific Behavioral Output. Genetics, 2009, 183, 595-605.	1.2	12
28	Distinct Isoforms of the RFX Transcription Factor DAF-19 Regulate Ciliogenesis and Maintenance of Synaptic Activity. Molecular Biology of the Cell, 2008, 19, 5517-5528.	0.9	49
29	Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species. Genome Biology, 2007, 8, R195.	13.9	97
30	Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics. Genome Biology, 2006, 7, R126.	13.9	86
31	Lifespan decrease in aCaenorhabditis elegansmutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons. FEBS Letters, 2006, 580, 484-490.	1.3	78
32	Functional Genomics of the Cilium, a Sensory Organelle. Current Biology, 2005, 15, 935-941.	1.8	245
33	Analysis of xbx genes in C. elegans. Development (Cambridge), 2005, 132, 1923-1934.	1.2	175
34	The C. elegans homologs of nephrocystin-1 and nephrocystin-4 are cilia transition zone proteins involved in chemosensory perception. Journal of Cell Science, 2005, 118, 5575-5587.	1.2	103
35	XBX-1 Encodes a Dynein Light Intermediate Chain Required for Retrograde Intraflagellar Transport and Cilia Assembly inCaenorhabditis elegans. Molecular Biology of the Cell, 2003, 14, 2057-2070.	0.9	120
36	DrosophilaRegulatory factor X is necessary for ciliated sensory neuron differentiation. Development (Cambridge), 2002, 129, 5487-5498.	1.2	142

#	Article	IF	CITATIONS
37	The RFX-Type Transcription Factor DAF-19 Regulates Sensory Neuron Cilium Formation in C. elegans. Molecular Cell, 2000, 5, 411-421.	4.5	314