
Krzysztof Tokarski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6777817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of the 5-HT7 receptor and MMP-9 signaling module in the hippocampal CA1 region is necessary for the development of depressive-like behavior. Cell Reports, 2022, 38, 110532.	6.4	18
2	Behavioral consequences of co-administration of MTEP and the COX-2 inhibitor NS398 in mice. Part 2. Neuroscience Letters, 2021, 741, 135435.	2.1	9
3	Contribution of Hypothyroidism to Cognitive Impairment and Hippocampal Synaptic Plasticity Regulation in an Animal Model of Depression. International Journal of Molecular Sciences, 2021, 22, 1599.	4.1	11
4	The Role of the Posterior Hypothalamus in the Modulation and Production of Rhythmic Theta Oscillations. Neuroscience, 2021, 470, 100-115.	2.3	6
5	Cellular, synaptic, and network effects of chemokines in the central nervous system and their implications to behavior. Pharmacological Reports, 2021, 73, 1595-1625.	3.3	9
6	5-HT7 receptors enhance inhibitory synaptic input to principal neurons in the mouse basal amygdala. Neuropharmacology, 2021, 198, 108779.	4.1	4
7	Evidence for the interaction of COX-2 with mGluR5 in the regulation of EAAT1 and EAAT3 protein levels in the mouse hippocampus. The influence of oxidative stress mechanisms. Brain Research, 2021, 1771, 147660.	2.2	6
8	Astrocytes determine conditioned response to morphine via glucocorticoid receptor-dependent regulation of lactate release. Neuropsychopharmacology, 2020, 45, 404-415.	5.4	24
9	5-HT7 receptors increase the excitability of hippocampal CA1 pyramidal neurons by inhibiting the A-type potassium current. Neuropharmacology, 2020, 177, 108248.	4.1	5
10	NS398, a cyclooxygenase-2 inhibitor, reverses memory performance disrupted by imipramine in C57Bl/6J mice. Brain Research, 2020, 1734, 146741.	2.2	10
11	Ketamine Administration Reverses Corticosterone-Induced Alterations in Excitatory and Inhibitory Transmission in the Rat Dorsal Raphe Nucleus. Neural Plasticity, 2019, 2019, 1-10.	2.2	8
12	Tetrabromobisphenol A-induced depolarization of rat cerebellar granule cells: exÂvivo and inÂvitro studies. Chemosphere, 2019, 223, 64-73.	8.2	8
13	Simultaneous activation of muscarinic and CABAB receptors as a bidirectional target for novel antipsychotics. Behavioural Brain Research, 2019, 359, 671-685.	2.2	14
14	Hyperforin Potentiates Antidepressant-Like Activity of Lanicemine in Mice. Frontiers in Molecular Neuroscience, 2018, 11, 456.	2.9	29
15	The 5-HT7 receptor antagonist SB 269970 ameliorates corticosterone-induced alterations in 5-HT7 receptor-mediated modulation of GABAergic transmission in the rat dorsal raphe nucleus. Psychopharmacology, 2018, 235, 3381-3390.	3.1	8
16	Mutual activation of glutamatergic mGlu4 and muscarinic M4 receptors reverses schizophrenia-related changes in rodents. Psychopharmacology, 2018, 235, 2897-2913.	3.1	20
17	Neurochemical and behavioral studies on the 5-HT 1A -dependent antipsychotic action of the mGlu 4 receptor agonist LSP4-2022. Neuropharmacology, 2017, 115, 149-165.	4.1	22
18	NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference. ENeuro, 2016, 3, ENEURO.0084-15.2016.	1.9	24

KRZYSZTOF TOKARSKI

#	Article	IF	CITATIONS
19	5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin. Frontiers in Cellular Neuroscience, 2015, 9, 324.	3.7	23
20	Stress- and antidepressant treatment-induced modifications of 5-HT7 receptor functions in the rat brain. Pharmacological Reports, 2012, 64, 1305-1315.	3.3	7
21	Acute and repeated treatment with the 5-HT7 receptor antagonist SB 269970 induces functional desensitization of 5-HT7 receptors in rat hippocampus. Pharmacological Reports, 2012, 64, 256-265.	3.3	20
22	Sensory learning-induced enhancement of inhibitory synaptic transmission in the barrel cortex of the mouse. European Journal of Neuroscience, 2007, 26, 134-141.	2.6	37
23	Effects of repetitive administration of tianeptine, zinc hydroaspartate and electroconvulsive shock on the reactivity of 5-HT(7) receptors in rat hippocampus. Pharmacological Reports, 2007, 59, 627-35.	3.3	7
24	Imipramine treatment ameliorates corticosterone-induced alterations in the effects of 5-HT1A and 5-HT4 receptor activation in the CA1 area of rat hippocampus. European Neuropsychopharmacology, 2006, 16, 383-390.	0.7	7
25	Repeated administration of citalopram and imipramine alters the responsiveness of rat hippocampal circuitry to the activation of 5-HT7 receptors. European Journal of Pharmacology, 2005, 524, 60-66.	3.5	17
26	5-HT7 receptors increase the excitability of rat hippocampal CA1 pyramidal neurons. Brain Research, 2003, 993, 230-234.	2.2	69
27	Imipramine but not 5-HT1A receptor agonists or neuroleptics induces adaptive changes in hippocampal 5-HT1A and 5-HT4 receptors. European Journal of Pharmacology, 2002, 443, 51-57.	3.5	8
28	Prolonged corticosterone treatment alters the responsiveness of 5-HT 1A receptors to 8-OH-DPAT in rat CA1 hippocampal neurons. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 357-367.	3.0	29
29	Comparison of the effects of 5-HT 1A and 5-HT 4 receptor activation on field potentials and epileptiform activity in rat hippocampus. Experimental Brain Research, 2002, 147, 505-510.	1.5	24
30	Opposite effects of antidepressants and corticosterone on the sensitivity of hippocampal CA1 neurons to 5-HT 1A and 5-HT 4 receptor activation. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 491-498.	3.0	40
31	Imipramine increases the 5-HT1A receptor-mediated inhibition of hippocampal neurons without changing the 5-HT1A receptor binding. European Journal of Pharmacology, 1996, 305, 79-85.	3.5	28
32	Repeated treatment with antidepressant drugs induces subsensitivity to the excitatory effect of 5-HT4 receptor activation in the rat hippocampus. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 355, 14-19.	3.0	35