Carlo Paternoster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6777596/publications.pdf

Version: 2024-02-01

		687220	677027
36	547	13	22
papers	citations	h-index	g-index
			400
36	36	36	680
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surface processing for iron-based degradable alloys: A preliminary study on the importance of acid pickling. Bioactive Materials, 2022, 11, 166-180.	8.6	11
2	Improving the radiopacity of Fe–Mn biodegradable metals by magnetron-sputtered W–Fe–Mn–C coatings: Application for thinner stents. Bioactive Materials, 2022, 12, 64-70.	8.6	3
3	Effect of silver in thermal treatments of Fe-Mn-C degradable metals: Implications for stent processing. Bioactive Materials, 2022, 12, 30-41.	8.6	3
4	Mechanical and degradation behavior of three Fe-Mn-C alloys for potential biomedical applications. Materials Today Communications, 2021, 27, 102250.	0.9	8
5	Effect of oxygen content on the mechanical properties and plastic deformation mechanisms in the TWIP/TRIP Tia€"12Mo alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 817, 141346.	2.6	4
6	Six-Month Long <i>In Vitro</i> Degradation Tests of Biodegradable Twinning-Induced Plasticity Steels Alloyed with Ag for Stent Applications. ACS Biomaterials Science and Engineering, 2021, 7, 3669-3682.	2.6	7
7	Laser surface texturing of SS316L for enhanced adhesion of HUVECs. Surface Engineering, 2020, 36, 1240-1249.	1.1	18
8	Effect of laser welding on the mechanical and degradation behaviour of Fe-20Mn-0.6C bioabsorbable alloy. Journal of Materials Research and Technology, 2020, 9, 13474-13482.	2.6	9
9	Influence of cross – Rolling on the microstructure and mechanical properties of Zn bioabsorbable alloys. Materials Letters, 2020, 279, 128504.	1.3	6
10	Plasma-immersion ion implantation surface oxidation on a cobalt-chromium alloy for biomedical applications. Biointerphases, 2020, 15, 041004.	0.6	8
11	Microstructural Precipitation Evolution and In Vitro Degradation Behavior of a Novel Chill-Cast Zn-Based Absorbable Alloy for Medical Applications. Metals, 2020, 10, 586.	1.0	4
12	Effect of Silver on Corrosion Behavior of Plastically Deformed Twinning-Induced Plasticity Steel for Biodegradable Stents. Jom, 2020, 72, 1892-1901.	0.9	8
13	Surface modification and direct plasma amination of L605 CoCr alloys: on the optimization of the oxide layer for application in cardiovascular implants. RSC Advances, 2019, 9, 2292-2301.	1.7	13
14	The addition of silver affects the deformation mechanism of a twinning-induced plasticity steel: Potential for thinner degradable stents. Acta Biomaterialia, 2019, 98, 103-113.	4.1	13
15	Understanding the effect of the reinforcement addition on corrosion behavior of Fe/Mg2Si composites for biodegradable implant applications. Materials Chemistry and Physics, 2019, 223, 771-778.	2.0	20
16	Long-term <i>in vitro</i> degradation behaviour of Fe and Fe/Mg ₂ Si composites for biodegradable implant applications. RSC Advances, 2018, 8, 9627-9639.	1.7	17
17	Influence of cold rolling on inÂvitro cytotoxicity and electrochemical behaviour of an Fe-Mn-C biodegradable alloy in physiological solutions. Heliyon, 2018, 4, e00926.	1.4	9
18	Surface modification of L605 by oxygen plasma immersion ion implantation for biomedical applications. MRS Communications, 2018, 8, 1404-1412.	0.8	5

#	Article	IF	CITATIONS
19	Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications. Materials Science and Engineering C, 2017, 81, 511-521.	3.8	24
20	Effect of electrolyte composition and deposition current for Fe/Fe-P electroformed bilayers for biodegradable metallic medical applications. Materials Science and Engineering C, 2017, 70, 195-206.	3.8	9
21	The use of multiple pseudo-physiological solutions to simulate the degradation behavior of pure iron as a metallic resorbable implant: a surface-characterization study. Physical Chemistry Chemical Physics, 2016, 18, 19637-19646.	1.3	32
22	CO2-rich atmosphere strongly affects the degradation of Fe-21Mn-1C for biodegradable metallic implants. Materials Letters, 2016, 181, 362-366.	1.3	26
23	In vitro degradation behavior of Fe–20Mn–1.2C alloy in three different pseudo-physiological solutions. Materials Science and Engineering C, 2016, 61, 564-573.	3.8	50
24	Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application. Biomatter, 2016, 6, e959874.	2.6	53
25	Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants. Acta Biomaterialia, 2015, 17, 68-77.	4.1	57
26	Laser surface structuring affects polymer deposition, coating homogeneity, and degradation rate of Mg alloys. Materials Letters, 2015, 160, 359-362.	1.3	21
27	Structural and mechanical characterization of nanostructured titanium oxide thin films deposited by filtered cathodic vacuum arc. Surface and Coatings Technology, 2013, 227, 42-47.	2.2	9
28	Mechanical, microstructural and oxidation properties of reactively sputtered thin CrN coatings on steel. Thin Solid Films, 2011, 519, 6515-6521.	0.8	25
29	Titanium oxide thin film deposition by pulsed arc vacuum plasma. Journal of Physics: Conference Series, 2011, 275, 012019.	0.3	3
30	Fabrication of nanopatterned metal layers on silicon by nanoindentation/nanoscratching and electrodeposition. Electrochimica Acta, 2010, 55, 3355-3360.	2.6	4
31	Thermal stability of CrNx nanometric coatings deposited on stainless steel. Journal of Materials Science, 2008, 43, 3377-3384.	1.7	13
32	Thermal evolution and mechanical properties of hard Ti–Cr–B–N and Ti–Al–Si–B–N coatings. Surfa and Coatings Technology, 2008, 203, 736-740.	^C 2.2	36
33	A microstructure study of nanostructured Fe–Mo+1.5wt.%SiO2 and +1.5wt.%TiO2 powders compacted by spark plasma sintering. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 496, 121-132.	2.6	12
34	Thermal Cycling Stability of Cr-N Thin Films Deposited on Stainless Steel. High Temperature Materials and Processes, 2007, 26, .	0.6	1
35	Oxidation Behaviour and Thermal Stability of Nanocomposited Ti-Al-Si-B-N and Ti-Cr-B-N Coatings. Materials Science Forum, 0, 604-605, 19-28.	0.3	3
36	Thermal Stability of Nanostructured Coatings. Materials Science Forum, 0, 653, 1-22.	0.3	3