
Ernesto Antonio Urquieta-GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/67775/publications.pdf Version: 2024-02-01

ERNESTO ANTONIO

#	Article	IF	CITATIONS
1	Reduction of NO with CO on CuO or Fe2O3 catalysts supported on TiO2 in the presence of O2, SO2 and water steam. Fuel, 2014, 118, 137-147.	6.4	86
2	High specific surface area LaFeCo perovskites—Synthesis by nanocasting and catalytic behavior in the reduction of NO with CO. Applied Catalysis B: Environmental, 2009, 90, 441-450.	20.2	59
3	Magnetic ZSM-5 zeolite: a selective catalyst for the valorization of furfuryl alcohol to γ-valerolactone, alkyl levulinates or levulinic acid. Green Chemistry, 2016, 18, 5586-5593.	9.0	59
4	Synthesis of mesoporous ZSM-5 by crystallisation of aged gels in the presence of cetyltrimethylammonium cations. Catalysis Today, 2008, 133-135, 69-79.	4.4	58
5	Effects of crystal size, acidity, and synthesis procedure on the catalytic performance of gallium and aluminum MFI zeolites in glycerol dehydration. Journal of Molecular Catalysis A, 2016, 422, 148-157.	4.8	48
6	Microporous–mesoporous ZSM-12 zeolites: Synthesis by using a soft template and textural, acid and catalytic properties. Catalysis Today, 2015, 243, 92-102.	4.4	44
7	Metal-exchanged magnetic β-zeolites: valorization of lignocellulosic biomass-derived compounds to platform chemicals. Green Chemistry, 2017, 19, 3856-3868.	9.0	35
8	Sol–gel synthesis of silica–cobalt composites by employing Co3O4 colloidal dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395, 217-224.	4.7	34
9	Molybdenum-promoted cobalt supported on SBA-15: Steam and sulfur dioxide stable catalyst for CO oxidation. Applied Catalysis B: Environmental, 2020, 277, 119248.	20.2	26
10	Preparation of Mesoporous Fe2O3-Supported ZSM-5 Zeolites by Carbon-Templating and their Evaluation as Photo-Fenton Catalysts to Degrade Organic Pollutant. Materials Research, 2016, 19, 1399-1406.	1.3	25
11	NiMoS HDS catalysts – The effect of the Ti and Zr incorporation into the silica support and of the catalyst preparation methodology on the orientation and activity of the formed MoS2 slabs. Applied Catalysis A: General, 2016, 528, 74-85.	4.3	20
12	Secondary crystallization of SBA-15 pore walls into microporous material with MFI structure. Catalysis Today, 2005, 107-108, 759-767.	4.4	18
13	Catalytic cracking of crude soybean oil on Beta nanozeolites. Journal of Molecular Catalysis A, 2016, 422, 89-102.	4.8	16
14	USY-zeolite catalyzed synthesis of 1,4-dihydropyridines under microwave irradiation: structure and recycling of the catalyst. Journal of Molecular Structure, 2021, 1227, 129430.	3.6	16
15	Incorporation of the precursors of Mo and Ni oxides directly into the reaction mixture of sol–gel prepared γ-Al2O3-ZrO2 supports – Evaluation of the sulfided catalysts in the thiophene hydrodesulfurization. Catalysis Today, 2015, 246, 184-190.	4.4	14
16	A novel synthesis route to obtain magnetic nanocrystalline cobalt ferrite with photo-Fenton activity. Materials Chemistry and Physics, 2021, 257, 123741.	4.0	12
17	Efficient and stable operation of capacitive deionization assessed by electrode and membrane asymmetry. Electrochimica Acta, 2021, 388, 138631.	5.2	11
18	One-Step Synthesis of Functionalized ZSM-12 Zeolite as a Hybrid Basic Catalyst. Catalysis Letters, 2016, 146, 2200-2213.	2.6	10

ERNESTO ANTONIO

#	Article	IF	CITATIONS
19	Ethanol dehydrogenative reactions catalyzed by copper supported on porous Al–Mg mixed oxides. RSC Advances, 2019, 9, 3294-3302.	3.6	10
20	Generation of 3D-Intracrystalline Diffusion Structures from a 1D/12MR HZSM-12 Zeolite: Improvements in the Catalytic Stability. Industrial & Engineering Chemistry Research, 2019, 58, 7044-7051.	3.7	10
21	Effect of the Synthesis Method on Physicochemical Properties and Performance of Cu/ZnO/Nb ₂ O ₅ Catalysts for CO ₂ Hydrogenation to Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 18750-18758.	3.7	10
22	Mesoporous carbons prepared by nano-casting with meso- or non-porous silica nanoparticles. Journal of the Brazilian Chemical Society, 2006, 17, 1170-1180.	0.6	9
23	Selective catalytic reduction of NO to N2 with copper and cobalt exchanged ZSM-5 zeolites: the effect of calcium addition. Journal of the Brazilian Chemical Society, 2005, 16, 589-596.	0.6	8
24	Emulsion-mediated synthesis of hierarchical mesoporous-macroporous Al-Mg hydrotalcites. Microporous and Mesoporous Materials, 2017, 240, 149-158.	4.4	8
25	CO oxidation over Co-catalysts supported on silica-titania – The effects of the catalyst preparation method and the amount of incorporated Ti on the formation of more active Co3+ species. Applied Catalysis A: General, 2018, 565, 152-162.	4.3	8
26	Tuning the BrĄ̃nsted and Lewis acid nature in HZSM-5 zeolites by the generation of intracrystalline mesoporosity—Catalytic behavior for the acylation of anisole. Molecular Catalysis, 2020, 492, 111026.	2.0	7
27	The influence of a silica pillar in lamellar tetratitanate for selective catalytic reduction of NOx using NH3. Materials Research Bulletin, 2015, 61, 124-129.	5.2	6
28	Greener synthesis of 1,2,3-triazoles using a copper(<scp>i</scp>)-exchanged magnetically recoverable β-zeolite as catalyst. New Journal of Chemistry, 2020, 44, 15046-15053.	2.8	6
29	Catalytic Properties of Mesoporous Aluminosilicates and Lanthanum Containing Mesoporous Aluminosilicates studied by m-Xylene Isomerisation. Studies in Surface Science and Catalysis, 2003, , 745-748.	1.5	4
30	Zirconiaâ€Supported Cobalt Catalysts: Activity and Selectivity in NO Reduction by CO. ChemistrySelect, 2017, 2, 11565-11573.	1.5	4
31	Carbon-Templated Mesopores in HZSM-5 Zeolites: Effect on Cyclohexane Cracking. Catalysis Letters, 2020, 150, 3481-3494.	2.6	4
32	Direct addition of the precursor salts of Mo, Co or Ni oxides during the sol formation of γ-Al2O3 and ZrO2 - The effect on metal dispersion. Studies in Surface Science and Catalysis, 2010, 175, 671-674.	1.5	3
33	Catalytic performance of texturally improved Al–Mg mixed oxides derived from emulsion-synthesized hydrotalcites. RSC Advances, 2018, 8, 6039-6046.	3.6	3
34	Mesoporous HBeta zeolites application in the desulfurization of 2-methylthiophene. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 401-416.	1.7	3
35	Desproporcionamento de tolueno sobre zeólitas tipo mordenita - atividade e seletividade na obtenção de xilenos. Quimica Nova, 2000, 23, 303-306.	0.3	2
36	Mesoporous ZSM-5 synthesized by simultaneous mesostructuring and crystallization of ZSM-5 nuclei. Studies in Surface Science and Catalysis, 2006, 162, 323-330.	1.5	2

ERNESTO ANTONIO

#	Article	IF	CITATIONS
37	Mordenite seeding gels mesostructured by the nonionic surfactant Pluronic P123. Studies in Surface Science and Catalysis, 2006, 162, 433-440.	1.5	2
38	2-Methylthiophene reactions on modified KSF clays. Molecular Catalysis, 2020, 493, 111085.	2.0	2
39	Regulation of Hydrogen Peroxide Dosage in a Heterogeneous Photo-Fenton Process. Processes, 2021, 9, 2167.	2.8	2
40	Preparation of mesoporous solids by agglomeration of silica nanospheres. Studies in Surface Science and Catalysis, 2003, 146, 197-200.	1.5	1
41	Use of commercial carbons as template for the preparation of high specific surface area perovskites. Studies in Surface Science and Catalysis, 2010, , 657-660.	1.5	1
42	Influence of Temperature and Time of Seed Aging on the Properties of Beta Zeolite/MCM-41 Materials. Journal of the Brazilian Chemical Society, 2014, , .	0.6	1
43	Mesoporous ZSM-5 prepared by sequential nano-casting of MCM-41 nanospheres. Studies in Surface Science and Catalysis, 2006, , 409-416.	1.5	Ο
44	Secondary crystallization of SBA-15 in the presence of TPAOH and aqueous glycerol - Influence of the water content. Studies in Surface Science and Catalysis, 2006, , 347-354.	1.5	0
45	Porous carbons cast from meso- or nonporous silica nanoparticles. Studies in Surface Science and Catalysis, 2007, , 377-380.	1.5	Ο
46	Redução catalÃtica seletiva de óxidos de nitrogênio sobre hematita contendo cobre. Quimica Nova, 2007, 30, 611-615.	0.3	0