
Howard J Fallowfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6777292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Examination of Australian backyard poultry for <i>Salmonella</i> , <i>Campylobacter</i> and <i>Shigella</i> spp., and related risk factors. Zoonoses and Public Health, 2022, 69, 13-22.	0.9	5
2	Comparison of disinfection in intermittently mixed (6 am–6 pm) and continuously mixed high rate algal ponds treating domestic wastewater in winter. Environmental Science: Water Research and Technology, 2022, 8, 771-780.	1.2	1
3	Spatial performance assessment of reed bed filtration in a constructed wetland. Science of the Total Environment, 2022, 820, 153060.	3.9	1
4	Juncus sarophorus, a native Australian species, tolerates and accumulates PFOS, PFOA and PFHxS in a glasshouse experiment. Science of the Total Environment, 2022, 826, 154184.	3.9	9
5	Transport and retention of graphene oxide nanoparticles in sandy and carbonaceous aquifer sediments: Effect of physicochemical factors and natural biofilm. Journal of Environmental Management, 2021, 278, 111419.	3.8	7
6	Autoflocculation of microalgae, via magnesium hydroxide precipitation, in a high rate algal pond treating municipal wastewater in the South Australian Riverland. Algal Research, 2021, 59, 102418.	2.4	12
7	A Successful Technique for the Surface Decontamination of Salmonella enterica Serovar Typhimurium Externally Contaminated Whole Shell Eggs Using Common Commercial Kitchen Equipment. Foodborne Pathogens and Disease, 2020, 17, 404-410.	0.8	3
8	Combined physical, chemical and biological clogging of managed aquifer recharge and the effect of biofilm on virus transport behavior: A column study. Journal of Water Process Engineering, 2020, 33, 101115.	2.6	10
9	Changes of viral and prokaryote abundances in a high rate algal pond using flow cytometry detection. Water Science and Technology, 2020, 82, 1062-1069.	1.2	2
10	Effect of bacteria and virus on transport and retention of graphene oxide nanoparticles in natural limestone sediments. Chemosphere, 2020, 248, 125929.	4.2	14
11	Role of biofilm on virus inactivation in limestone aquifers: implications for managed aquifer recharge. Journal of Environmental Health Science & Engineering, 2020, 18, 21-34.	1.4	1
12	Nitrification performance of high rate nitrifying trickling filters at low ammonia concentrations: does the aspect ratio matter?. Environmental Science and Pollution Research, 2019, 26, 20520-20529.	2.7	2
13	The Combined Effect of pH and Temperature on the Survival of Salmonella enterica Serovar Typhimurium and Implications for the Preparation of Raw Egg Mayonnaise. Pathogens, 2019, 8, 218.	1.2	13
14	Case study on the effect continuous CO2 enrichment, via biogas scrubbing, has on biomass production and wastewater treatment in a high rate algal pond. Journal of Environmental Management, 2019, 251, 109614.	3.8	13
15	Comparison of the treatment performance of a high rate algal pond and a facultative waste stabilisation pond operating in rural South Australia. Water Science and Technology, 2018, 78, 3-11.	1.2	10
16	Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. Journal of Environmental Management, 2018, 205, 253-261.	3.8	125
17	Independent validation and regulatory agency approval for high rate algal ponds to treat wastewater from rural communities. Environmental Science: Water Research and Technology, 2018, 4, 195-205.	1.2	11
18	MS2 coliphage and E. coli UVB inactivation rates in optically clear water: dose, dose rate and temperature dependence. Water Science and Technology, 2018, 78, 2228-2238.	1.2	5

HOWARD J FALLOWFIELD

#	Article	IF	CITATIONS
19	Performance of a high rate algal pond treating septic tank effluent from a community wastewater management scheme in rural South Australia. Algal Research, 2018, 35, 325-332.	2.4	36
20	Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment. World Journal of Microbiology and Biotechnology, 2017, 33, 117.	1.7	84
21	The toxicity of cationic surfactant HDTMA-Br, desorbed from surfactant modified zeolite, towards faecal indicator and environmental microorganisms. Journal of Hazardous Materials, 2017, 339, 208-215.	6.5	25
22	The influence of the microbial quality of wastewater, lettuce cultivars and enumeration technique when estimating the microbial contamination of wastewater-irrigated lettuce. Journal of Water and Health, 2017, 15, 228-238.	1.1	1
23	Harvesting of algae in municipal wastewater treatment by calcium phosphate precipitation mediated by photosynthesis, sodium hydroxide and lime. Algal Research, 2017, 27, 115-120.	2.4	25
24	Reducing Risk of Salmonellosis through Egg Decontamination Processes. International Journal of Environmental Research and Public Health, 2017, 14, 335.	1.2	27
25	A Review of Temperature, pH, and Other Factors that Influence the Survival of Salmonella in Mayonnaise and Other Raw Egg Products. Pathogens, 2016, 5, 63.	1.2	38
26	Removal of chemicals of concern by high rate nitrifying trickling filters. Journal of Chemical Technology and Biotechnology, 2016, 91, 3070-3078.	1.6	9
27	Microbial risk in wastewater irrigated lettuce: comparing Escherichia coli contamination from an experimental site with a laboratory approach. Water Science and Technology, 2016, 74, 749-755.	1.2	9
28	Impact of exogenous organic carbon on the removal of chemicals of concern in the high rate nitrifying trickling filters. Journal of Environmental Management, 2016, 174, 7-13.	3.8	7
29	Higher Storage Temperature Causes Greater Salmonella enterica Serovar Typhimurium Internal Penetration of Artificially Contaminated, Commercially Available, Washed Free Range Eggs. Journal of Food Protection, 2016, 79, 1247-1251.	0.8	9
30	Inactivation of indicator organisms in wastewater treated by a high rate algal pond system. Journal of Applied Microbiology, 2016, 121, 577-586.	1.4	40
31	The presence of opportunistic pathogens, Legionella spp., L. pneumophila and Mycobacterium avium complex, in South Australian reuse water distribution pipelines. Journal of Water and Health, 2015, 13, 553-561.	1.1	11
32	Publication in 1672 of animal deaths at the Tuchomskie Lake, northern Poland and a likely role of cyanobacterial blooms. Toxicon, 2015, 108, 285-286.	0.8	14
33	Uncertainties associated with assessing the public health risk from Legionella. Frontiers in Microbiology, 2014, 5, 501.	1.5	35
34	Detection of Legionella, L. pneumophila and Mycobacterium Avium Complex (MAC) along Potable Water Distribution Pipelines. International Journal of Environmental Research and Public Health, 2014, 11, 7393-7405.	1.2	37
35	Heterotrophic-Autotrophic Denitrification. SpringerBriefs in Water Science and Technology, 2014, , 27-60.	0.5	0
36	Remediation of Nitrate-Nitrogen Contaminated Groundwater by a Heterotrophic-Autotrophic Denitrification Approach in an Aerobic Environment. Water, Air, and Soil Pollution, 2012, 223, 4029-4038.	1.1	25

Howard J Fallowfield

#	Article	IF	CITATIONS
37	Structure of nitrifying biofilms in a high-rate trickling filter designed for potable water pre-treatment. Water Research, 2011, 45, 3489-3498.	5.3	35
38	Application of high rate nitrifying trickling filters to remove low concentrations of ammonia from reclaimed municipal wastewater. Water Science and Technology, 2010, 61, 2425-2432.	1.2	7
39	Hydrodynamic performance of pilot-scale duckweed, algal-based, rock filter and attached-growth media reactors used for waste stabilisation pond research. Ecological Engineering, 2010, 36, 1700-1708.	1.6	12
40	Microbially influenced corrosion of galvanized steel pipes in aerobic water systems. Journal of Applied Microbiology, 2010, 109, 239-247.	1.4	44
41	Nitrification potential in waste stabilisation ponds: comparison of a secondary and tertiary pond system. Water Science and Technology, 2010, 61, 781-788.	1.2	3
42	The impact of organic carbon on the performance of a high rate nitrifying trickling filter designed to pre-treat potable water. Water Science and Technology, 2010, 61, 1875-1883.	1.2	4
43	A review of the factors affecting sunlight inactivation of micro-organisms in waste stabilisation ponds: preliminary results for enterococci. Water Science and Technology, 2010, 61, 885-890.	1.2	50
44	Radium and radon radioisotopes in regional groundwater, intertidal groundwater, and seawater in the Adelaide Coastal Waters Study area: Implications for the evaluation of submarine groundwater discharge. Marine Chemistry, 2008, 109, 318-336.	0.9	40
45	Application of high rate nitrifying trickling filters for potable water treatment. Water Research, 2008, 42, 4514-4524.	5.3	41
46	Relative performance of duckweed ponds and rock filtration as advanced in-pond wastewater treatment processes for upgrading waste stabilisation pond effluent: a pilot study. Water Science and Technology, 2007, 55, 111-119.	1.2	7
47	Temporal and spatial variation of physical, biological, and chemical parameters in a large waste stabilisation pond, and the implications for WSP modelling. Water Science and Technology, 2007, 55, 1-9.	1.2	139
48	Profiling and modelling of thermal changes in a large waste stabilisation pond. Water Science and Technology, 2005, 51, 163-172.	1.2	32
49	The adsorption of cyanobacterial hepatoxins as a function of soil properties. Journal of Water and Health, 2005, 3, 339-347.	1.1	29
50	Performance of a pilot-scale high rate algal pond system treating abattoir wastewater in rural South Australia: nitrification and denitrification. Water Science and Technology, 2005, 51, 117-124.	1.2	10
51	Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. Journal of Applied Microbiology, 2004, 96, 922-930.	1.4	146
52	Title is missing!. Hydrobiologia, 2003, 493, 7-15.	1.0	29
53	The influence of the chemical composition of drinking water on cuprosolvency by biofilm bacteria. Journal of Applied Microbiology, 2003, 94, 501-507.	1.4	37
54	The spatial significance of water quality indicators in waste stabilization ponds - limitations of residence time distribution analysis in predicting treatment efficiency. Water Science and Technology, 2003, 48, 211-218.	1.2	19

HOWARD J FALLOWFIELD

#	Article	IF	CITATIONS
55	Community experience and perceptions of water reuse. Water Science and Technology: Water Supply, 2003, 3, 9-16.	1.0	37
56	Characterisation of oxygen dynamics within a high-rate algal pond system used to treat abattoir wastewater. Water Science and Technology, 2003, 48, 61-68.	1.2	5
57	Variable photosynthetic characteristics in waste stabilisation ponds. Water Science and Technology, 2003, 48, 219-226.	1.2	6
58	Effectiveness of guideline faecal indicator organism values in estimation of exposure risk at recreational coastal sites. Water Science and Technology, 2003, 47, 191-198.	1.2	19
59	Determination of faecal pollutants in Torrens and Patawalonga catchment waters in South Australia using faecal sterols. Water Science and Technology, 2003, 47, 283-289.	1.2	21
60	The potential of riverbank filtration for drinking water supplies in relation to microsystin removal in brackish aquifers. Journal of Hydrology, 2002, 266, 209-221.	2.3	63
61	Enumeration of faecal coliforms from recreational coastal sites: evaluation of techniques for the separation of bacteria from sediments. Journal of Applied Microbiology, 2002, 93, 557-565.	1.4	71
62	Biofilms in copper plumbing systems: sensitivity to copper and chlorine and implications for corrosion. Water Science and Technology: Water Supply, 2002, 2, 81-87.	1.0	2
63	The adsorption of cyanobacterial hepatotoxins from water onto soil during batch experiments. Water Research, 2001, 35, 1461-1468.	5.3	93
64	Degradation of cyanobacterial hepatotoxins in batch experiments. Water Science and Technology, 2001, 43, 229-232.	1.2	53
65	Biofilms and microbially influenced cuprosolvency in domestic copper plumbing systems. Journal of Applied Microbiology, 2001, 91, 646-651.	1.4	27
66	Effect of salinity on photosynthetic activity of Nodularia spumigena. Journal of Applied Phycology, 2001, 13, 493-499.	1.5	11
67	Title is missing!. Journal of Applied Phycology, 1999, 11, 551-558.	1.5	13
68	Performance of a batch-fed High Rate Algal Pond for animal waste treatment. European Journal of Phycology, 1999, 34, 231-237.	0.9	13
69	Assessment of microbial involvement in the elevation of copper levels in drinking water. Journal of Applied Microbiology, 1998, 85, 597-602.	1.4	26
70	Effect of nutrient loading and retention time on performance of high rate algal ponds. Journal of Applied Phycology, 1997, 9, 301-309.	1.5	55
71	Influence of environmental parameters on biomass production and nutrient removal in a high rate algal pond operated by continuous culture. Water Science and Technology, 1996, 34, 133.	1.2	20
72	Coliform die-off rate constants in a high rate algal pond and the effect of operational and environmental variables. Water Science and Technology, 1996, 34, 141.	1.2	15

Howard J Fallowfield

#	Article	IF	CITATIONS
73	Performance of a flat plate, air-lift reactor for the growth of high biomass algal cultures. Journal of Applied Phycology, 1992, 4, 1-9.	1.5	44
74	Separation of components of the biomass from high rate algal ponds using PercollR density gradient centrifugation. Journal of Applied Phycology, 1992, 4, 157-163.	1.5	8
75	Modelling microalgal productivity in a High Rate Algal Pond based on wavelength dependent optical properties. Journal of Applied Phycology, 1989, 1, 247-256.	1.5	32
76	The extracellular release of dissolved organic carbon by freshwater cyanobacteria and algae and the interaction withLysobacterCP-1. British Phycological Journal, 1988, 23, 317-326.	1.3	13
77	A nutritional evaluation of farm waste grown and axenically cultured algal biomass. Agricultural Wastes, 1986, 15, 235-252.	0.4	1
78	The photosynthetic treatment of pig slurry in temperate climatic conditions: A pilot-plant study. Agricultural Wastes, 1985, 12, 111-136.	0.4	45
79	Potential value of the Limulus lysate assay for the measurement of meat spoilage. International Journal of Food Science and Technology, 1985, 20, 467-479.	1.3	13