
Xiaobo Wang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6777283/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fe-Mn/Al 2 O 3 catalysts for low temperature selective catalytic reduction of NO with NH 3. Chinese Journal of Catalysis, 2016, 37, 1314-1323.	14.0	72
2	Catalytic fast co-pyrolysis of bamboo sawdust and waste plastics for enhanced aromatic hydrocarbons production using synthesized CeO2/γ-Al2O3 and HZSM-5. Energy Conversion and Management, 2019, 196, 759-767.	9.2	56
3	Converting polycarbonate and polystyrene plastic wastes intoaromatic hydrocarbons via catalytic fast co-pyrolysis. Journal of Hazardous Materials, 2020, 386, 121970.	12.4	45
4	Promoting Aromatic Hydrocarbon Formation via Catalytic Pyrolysis of Polycarbonate Wastes over Fe- and Ce-Loaded Aluminum Oxide Catalysts. Environmental Science & Technology, 2020, 54, 8390-8400.	10.0	39
5	Catalytic degradation of waste rubbers and plastics over zeolites to produce aromatic hydrocarbons. Journal of Cleaner Production, 2021, 309, 127469.	9.3	35
6	Heterogeneous Diels–Alder tandem catalysis for converting cellulose and polyethylene into BTX. Journal of Hazardous Materials, 2021, 414, 125418.	12.4	30
7	Enhanced BTEX formation via catalytic fast pyrolysis of styrene-butadiene rubber: Comparison of different catalysts. Fuel, 2020, 278, 118322.	6.4	21
8	Polyethylene upcycling to fuels: Narrowing the carbon number distribution in n-alkanes by tandem hydropyrolysis/hydrocracking. Chemical Engineering Journal, 2022, 444, 136360.	12.7	19
9	The Effect of SO2 and Ca Co-pretreatment on the Catalytic Activity of Mn–Ce/TiO2 Catalysts for Selective Catalytic Reduction of NO with NH3. Catalysis Letters, 2020, 150, 3287-3295.	2.6	16
10	Effect of CaCO ₃ on catalytic activity of Fe–Ce/Ti catalysts for NH ₃ -SCR reaction. RSC Advances, 2020, 10, 44876-44883.	3.6	12
11	Precursor and dispersion effects of active species on the activity of Mn-Ce-Ti catalysts for NO abatement. Korean Journal of Chemical Engineering, 2019, 36, 1991-1999.	2.7	10
12	The effect of different Ca precursors on the activity of manganese and cerium oxides supported on TiO2 for NO abatement. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129, 153-164.	1.7	8
13	Superior activity of iron–manganese supported on kaolin for NO abatement at low temperature. Journal of Environmental Sciences, 2020, 88, 237-247.	6.1	6
14	Poisoning effect of calcium hydroxide on Fe–Ce/TiO2 catalyst for NO removal: evolution of active species and surface properties. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 245-258.	1.7	5
15	Promoted dispersion and uniformity of active species on Fe–Ce–Al catalysts for efficient NO abatement. RSC Advances, 2019, 9, 35751-35759.	3.6	4
16	Effect of synthesis methods on Fe–Ce/Ti catalysts for selective catalytic reduction: the physicochemical properties and catalytic activity. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 331-345.	1.7	2